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Abstract

We consider decentralized matching in a two-sided market of �rms

and workers with application costs and limited budgets. Workers

choose whether they should take the risk of applying to a higher-ranked

�rm (with some probability of rejection) or make a safe choice. We

show that application costs set by �rms with uncertain capacity may

be treated as a screening instrument in order to attract only strong ap-

plicants or avoid the competition. Surprisingly, competition may lead

to increasing costs: low-ranked �rms may even prefer implementing

highest possible costs in equilibrium. We provide economic intuition

behind this paradox and �nd necessary and su�cient conditions that

lead to this result.
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1 Introduction

1.1 Overview

The majority of theoretical literature on two-sided matching markets is
devoted to centralized markets. Although it is necessarily dictated by a vast
number of real life problems (e.g., school allocations, the medical residency
match, kidney exchange, etc.), there are many examples of markets that
are not (fully) centralized (for example, the market for junior economists,
paper submission to journals, dating sites, and so on). Thus, theoretical
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understanding of the outcomes generated by decentralized markets becomes
crucial for institutional design.

The general approach to matching markets is based on the pioneer work of
Gale & Shapley (1962) and is thoroughly summarized in Roth & Sotomayor
(1990) monograph. Another great survey analyzing, among others, di�er-
ent matching theory applications in labor economics, macroeconomics, and
monetary theory was brought by Chade, Eeckhout, and Smith (2017). How-
ever, the canonical notion of stability that is used in the vast majority of
papers becomes inapplicable if we need to consider matching frictions. They
may include incomplete information, dynamics, transfers, etc. In this paper,
we introduce a decentralized matching model with application costs on one
side of the market and limited budgets and incomplete information on the
other side. To �nd optimal matchings, we take an approach based on non-
cooperative game theory. Namely, we describe a matching process as a game
where all agents have their own strategies. Thus, we can use Nash equilib-
rium as a concept that allows us to successfully distinguish �good� and �bad�
matchings. On one hand, it signi�cantly complicates the model. On the
other hand, we obtain more nuanced results that take into account matching
frictions and get better understanding of the matching process itself.

We consider a two-sided market of �rms and workers (institutions and
applicants), where �rms simultaneously choose application costs in order to
maximize their pro�ts from the entire pool of applicants. Workers in turn
make a decision where to apply facing these costs and their budget con-
straints. We show that application costs set by institutions with uncertain
capacity may be treated as a screening instrument in order to avoid the com-
petition, attract only strong workers, and regulate a number of applicants.
Perhaps surprisingly, competition may lead to increasing costs: low-ranked
�rms may even prefer implementing highest possible costs. We provide eco-
nomic intuition behind this paradox and �nd necessary and su�cient condi-
tions that lead to this result and many other equilibria of interest. Also, the
case when �rms can change their threshold of acceptance is considered. We
�nd the optimal value of this threshold in the simplest case of two �rms.

Probably the most natural matching friction that goes along with incom-
plete information is dynamics. This may include early admissions (Avery
and Levin, 2010), job-market signaling (Coles, Kushnir, and Niederle, 2013),
or exploding o�ers (Pan, 2018), among others. All these papers use Nash
equilibrium concept to distinguish �optimal� matchings. Although the notion
of stability was successfully reconsidered for dynamic settings (Doval 2021,
Ho 2021), decentralized markets with uncertainties dictate new restrictions.

Focusing on the matching literature that analyzes incomplete information
along with application costs and/or admission thresholds, we should men-
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tion several papers. Avery and Levin (2010) introduce a two-period model
with two universities and a continuum of students (which is similar to our
framework). Universities may change their admission thresholds during both
periods to sort or attract students. Equilibria they found show that both uni-
versities appear to favor early applicants and that early admission process
may bene�t lower-ranked schools. Another paper by Nguyen, Peters, and
Poitevin (2017) considers a model of two universities and two students with
application costs and incomplete information about students' types. The
authors capture a well-known e�ect: lower-ranked schools don't necessarily
make an o�er to the best student among those who applied. Arnosti, Johari,
and Kanoria (2019) consider a dynamic model (agents arrive and depart over
time) with application costs on both sides of the market: it's costly to apply,
and it's costly to screen applicants. They show that there may be ine�ciency
on either of the sides. On one hand, employers may have screened the same
applicant who matches only one of them afterwards (wasted e�ort). On the
other hand, some applications may remain unscreened (congestion). He and
Magnac (2019) analyze empirically how application costs may help to avoid
this congestion. They conduct an experiment with admissions to master's
programs at the Toulouse School of Economics and show that low application
costs e�ectively reduce congestion without harming match quality.

Probably the closest paper to ours is the one by Chades, Lewis, and Smith
(2014, CLS). They formulate the college admissions problem for two ranked
schools with �xed capacities and costly applications. While having much
in common, our model is signi�cantly di�erent from theirs in many impor-
tant aspects. First, we assume an unlimited capacity for �rms. Although a
limited capacity is more natural in some student-to-school matching environ-
ments, there are examples such as online platforms where �rms do not face a
capacity constraint and would like to match with as many individuals as pos-
sible. Also, the number of enrolled workers may be successfully regulated by
setting application costs and the quality threshold in admissions. A perfect
illustration of this statement is PhD enrollment where sizes of cohorts may
slightly �uctuate from one year to another. Second, we use application costs
as a part of �rms' strategy sets, while in CLS application costs are �xed.
Again, �xed costs make perfect sense for college admission but give a lack of
�exibility in many other applications. For example, in transport economics
�rms need to decide where to choose the location of their store inside the city
limits: di�erent locations mean di�erent transportation costs. Finally, in our
model workers make their decisions already knowing the admission threshold
and application costs, while in CLS �rms and workers simultaneously choose
the threshold and where to apply, respectively. Therefore, in our framework
applicants have full information about the institutions' admission criteria.
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This captures a setting where students already know (or have a very good
idea of) what it takes to get admitted to the high-quality schools.

Because of these distinctions, some results in two discussed models are
completely di�erent. For example, in our model better �rms still get better
workers. Therefore, we do not observe this violation of monotonicity (when
lower-skilled students apply to higher-ranked universities) which is implied
by limited capacity. However, many other �ndings of CLS also take place
in our model. Probably the most important one is that college admission
standards do not necessarily re�ect their quality: the lower-ranked institution
may optimally implement higher admission threshold (in CLS) or higher
application costs (in our model). Thus, competition may surprisingly lead
to increasing prices.

Another important feature of our model is a stochastic independence of
worker's admission prospects across �rms. Here we follow the approach of
Chade and Smith (2006). In our model, a worker can observe her own type,
and the noise is independent across �rms. However, assume that applicant
does not know her type. For example, a student needs to decide upon her
college application portfolio before she gets to know the results of her high
school test (see Nageeb Ali and Shorrer, 2021). In this case, her probabili-
ties of being enrolled to higher-ranked �rms will be correlated. Rees-Jones,
Shorrer, and Tergiman (2019) provide an experiment showing that partici-
pants fail to account for this correlation. Instead of applying aggressively to
two good schools, a rational student should diversify her strategy by applying
to both good and safe schools, but the experiment outcome demonstrates the
opposite.

1.2 Motivating Example

Let's start with a simple motivating example (see Fig. 1). There is a
continuum pool of workers (Wθ)θ∈[0,1] uniformly distributed on [0, 1] (thus,
θ ∼ U[0,1]). Also, we have three �rms V2, V1, and V0 with unlimited capacity.
First two of them are considered higher-ranked, so the utility of getting
there for any worker is 3. The payo� from being matched with V0 is 1. The
probability that worker Wθ will be hired by a higher-ranked �rm is equal to
worker's type θ, and it is independent among V1 and V2. The lower-ranked
�rm is ready to accept Wθ with probability 1. We can call V0 a safe choice
then, and V1 and V2 are risky choices.
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Figure 1: What application fee should be implemented by V0?

Each worker knows her own type before making the decision. The safe
�rm values the worker with utility u0(θ) = θ. Thus, the more capable the
worker, the higher her chances to be hired by one of the higher-ranked �rms
and the more valuable for V0 she is.

Another restriction is that the budget of each Wθ is equal to 1, and V1

and V2 set their application costs as a half of the budget each. Thus, the
question is: what application fee must be implemented by V0? Should it be
less than the one set by the higher-ranked �rms?

For example, if the cost for V0 is zero, a worker will have a chance to apply
to all three �rms. If it's higher than zero but lower than 1/2, a worker faces
the hard decision choosing between applying to two higher-ranked �rms or
diversifying her application portfolio. Finally, V0 may force a worker to choose
between taking solely her safe option and applying to two higher-ranked �rms
by setting the application fees higher than 1/2. In the �rst case, all workers
will apply to V0 for free. In the second case, the marginal utility of making
the risky choice is 3θ, and the marginal utility of making the safe choice is 1.
Thus, a risk-neutral worker applies to two higher-ranked �rms if and only if
θ > 1/3. Finally, in the third case, a worker chooses between being accepted
to at least one of two higher-ranked �rms (and getting 3(1− (1− θ)2)) and
V0 (and getting 1). She would choose to apply solely to V0 if and only if
θ < 1−

√
2/3. This paragraph can be summarized mathematically (here c0

is an application fee set by V0, and U0 is an aggregate utility of V0 for the
entire pool of workers (Wθ)θ∈[0,1]):

U0 =

∫ 1

0

θ(1− θ)2dθ = 0.083 if c0 = 0,

U0 =

∫ 1/3

0

θ(1− θ)dθ = 0.043 if 0 < c0 6 1/2,

U0 =

∫ 1−
√

2/3

0

θdθ = 0.017 if 1/2 < c0 6 1.
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In the �rst integral, we can see that everyone applies to V0, but only the
workers who get hired neither by V1 nor by V2 (probability of this event is
(1 − θ)2) accept an o�er from V0. In the second integral, two thirds of the
workers with higher type do not even apply to V0. The lower half applies to
V0 and either V1 or V2. Thus, they accept an o�er from V0 with probability
1− θ. Finally, in the third integral only the workers with type θ < 1−

√
2/3

are going to apply to V0. They all accept an o�er from V0, since it is their
only application.

This example demonstrates that the safer �rm needs to implement zero
costs in order to attract better workers and get more pro�t. But what if the
di�erence between �rms is not so drastic? For example, assume now that
a = 3/2 and calculate the aggregate utility in this case.

U0 =

∫ 1

0

θ(1− θ)2dθ = 0.083 if c0 = 0,

U0 =

∫ 2/3

0

θ(1− θ)dθ = 0.123 if 0 < c0 6 1/2,

U0 =

∫ 1−1/
√

3

0

θdθ = 0.089 if 1/2 < c0 6 1.

We can see that, maybe against our expectations, V0 now should imple-
ment the same fees as the higher-ranked �rms forcing applicants to make the
unpleasant decision and taking a substantial part of the pool away from V1

and V2. Moreover, if we continue to decrease a, we will realize that starting
from a = 1.26 the most pro�table strategy for V0 will be setting the highest
possible costs equal to 1. We will call this strategy restrictive and, should
it be a part of the equilibrium, we will call this situation on the market Re-
strictive Equilibrium. Indeed, the lower-ranked �rm makes a job o�er to a
worker. However, should she reject it, she would be able to apply to all the
higher-ranked �rms, but there will be no safe option anymore.

We can observe the similar picture analyzing the quality of workers. The
more high-skilled workers are on the market, the less incentives the safer �rm
has to set higher costs, and vice versa.

The most natural (and inspiring) example of this model is the market
of prospective PhD students. Here �rms are universities, and workers are
PhD applicants. More precisely, we are interested in its di�erence between
North American and European schools. Namely, the majority of European
schools do not impose any application fees (we may consider paperwork as
some negligible cost though), while the situation in the US is actually the
opposite. Most of American universities charge $70�$120 for considering an
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application. Thus, we may say that our model is inspired (but not lim-
ited) by two markets of prospective PhD students in North American and
European schools. We �nd conditions for equilibria when costs are negligi-
ble (Inclusive, or European, equilibrium), costs are a substantial part of the
budget (Selective, or American, equilibrium), costs imply Restrictive equilib-
rium (the lower-ranked university tries to �steal� the higher-ranked student),
in addition to other equilibria. Also, application costs may re�ect time that
a student spends on preparing their documents. For example, some schools
may require a standard application package, and others may ask for some
unique �les or documents that take time and/or e�ort to prepare (e.g., essays
or additional recommendations).

Another noticeable setting is a model of opening �rms (stores) inside the
city limits. Here the budget of a customer is time that she is willing to spend
on shopping. Depending on customer needs (or willingness to spend money)
θ, she might choose a store with worse quality but better chances to �nd the
good she needs or vice versa. In the example above, this low-quality store
should choose whether it wants to open right in the city center (and provide
zero transportation costs for citizens) or somewhere on the outskirts.

Publications in scienti�c journals is another great example that satis�es
the model if we do not consider dynamics or keep the discount factor small
enough to focus only on the �rst round of submissions. Depending on quality
of the paper θ, an author may send the paper to a mediocre but safe journal
or try to publish higher with some probability of reject. We can assume that
the market here is decentralized and check if there is an equilibrium which
describes exactly what happens with this market in real life. Our �ndings
tell us that the equilibrium that forces authors to send their manuscripts
only to one journal at the time (ci = 1 for all i) is approachable when the
distribution of applicants is skewed towards low types (the majority of papers
are relatively bad).

Also, with some adjustments, our model may be applied to online plat-
forms (selling goods and consumer search), venture capital investments, and
online dating sites, among others.

We continue with the general description of the model in Section 2 and
consider the case of two universities in Section 3. For them, we will describe
all the eqilibria and �nd an optimal threshold for a higher-ranked �rm. Sec-
tion 4 is devoted to a richer case of three �rms when the probability of being
accepted by a higher-ranked �rm is equal to the type of a worker with sub-
stantial examples provided. Section 5 contains some general results. Proofs
and complex calculations are taken out to Appendix.
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2 The Model

Consider a two sided-market with m + 1 participants on one side and
a continuum of participants on another side. These participants form set
V = {V1, V2, . . . , Vm, V0} of �rms (institutions) and set W = {Wθ}θ∈[0,1]

of workers (applicants), respectively. All applicants have an equal budget
(endowment) that we normalize to 1. Institution Vi, i ∈ {1, 2, . . . ,m, 0}
introduces application cost ci > 0, and workers apply to �rms paying those
costs up to their budget constraints. Formally,∑

i=1,2,...,m,0

ci I{Wθ applies to Vi} 6 1 (1)

for any θ ∈ [0, 1]. Here, I{Wθ applies to Vi} is equal to 1 if Wθ applies to Vi,
and zero otherwise.

Type θ of each worker Wθ is a random variable on segment [0, 1] with
cumulative distribution function F . This type is entirely disclosed only to
a worker herself. For any i, �rms Vi observe noisy types xi = θ + εi where
εi are mutually independent and identically distributed symmetric random
variables with cdf G. We assume that G is absolutely continuous. Subindexes
may be omitted if it does not result in any confusion.

A worker applying to V0 gets accepted with probability 1. A worker ap-
plying to Vi (i ∈ {1, . . . ,m}) gets accepted if her observed type xi is higher
than x̄i. These x̄i are common knowledge and may either be given exoge-
nously or de�ned by �rms in advance. In any case, vector x̄ = (x̄1, . . . , x̄m)
is disclosed to both workers (before they make their decision about where to
apply) and �rms (before they implement costs). Let p be the probability of
being enrolled by Vi (i ∈ {1, . . . ,m}). Then

p = Pr{x > x̄} = Pr{ε > x̄− θ} = 1−G(x̄− θ). (2)

All �rms value workers depending on their type θ. Let nondecreasing
functions ui(θ) be the utilities of �rms Vi, i ∈ {1, . . . ,m, 0}. (We also assume
that u0(0) > 0.) Then aggregate expected utility functions for �rms are

Ui =

∫ 1

0

ui(θ) Pr{Wθ matches Vi}dF (θ) (i = 1, . . . ,m, 0).

Here, by �Wθ matches Vi� we mean that Wθ had applied to Vi, was made an
o�er, and accepted it.

Finally, let w(i) be a worker's utility of matching with Vi: w(0) = 1 and
w(i) = a > 1 if i ∈ {1, . . . ,m}. Thus, we can see that �rms V1, . . . , Vm are
higher-ranked than V0, and it is harder to get there. Lower-ranked V0 may
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be called a safe choice. If a worker gets hired by both higher-ranked and
lower-ranked �rms, she always chooses the �rst one. Also, we assume that
if an applicant gets enrolled to k of m higher-ranked �rms, she chooses one
of them with equal probability 1/k. The total welfare of all workers will be
denoted as W .

Now we are ready to describe the entire game. First, thresholds x̄ get
determined (either by �nature� or by institutions themselves). Then �rms
V1, V2, . . . , Vm, V0 independently set their nonnegative costs c1, c2, . . . , cm, c0

in order to maximize their expected utilities Ui. At the next step, workers
apply according to their types and budget constraint (1) in order to maximize
their own expected payo�s w. Unmatched workers and �rms receive zero
utility.

Let's describe our game formally. For simplicity, consider x̄ as given by
nature. Thus, setting a threshold is not a part of a �rm's strategy pro�le.
We de�ne the strategy set of the game as(

A1, . . . , Am, A0, (Bθ(c))θ∈[0,1],c∈([0,1]∪{1+δ})m+1

)
.

Here, a strategy set for �rm i is denoted by Ai = [0, 1] ∪ {1 + δ} (i ∈
{1, . . . ,m, 0}). A strategy set for worker θ in each information set de�ned by
�rms' actions c = (c1, . . . , cm, c0) ∈ (A1, . . . , Am, A0) is

Bθ(c) = (I{Wθ applies to Vi})mi=0, such that
m∑
i=0

I{Wθ applies to Vi}ci 6 1.

Again, I{·} is an indicator here. Value 1 + δ in Ai describes the case when
Vi does not want to enter the market and remains with zero payo� (we could
use any ci > 1 instead).

Should �rms be allowed to choose x̄i ∈ X̄i, sets X̄i ∈ R (i ∈ {1, . . . ,m})
will be included in the strategy set of the game:(

X̄1, . . . , X̄m, (A1(x̄))x̄, . . . , (Am(x̄))x̄, (A0(x̄))x̄, (Bθ(c, x̄))θ,c,x̄
)
.

We can see that now �rm and workers need to de�ne their strategies for any
possible value of x̄.

Note that technically this market may be called the game only from the
�rms' perspective. Workers make decisions in order to maximize their own
pro�ts, and these decisions do not depend on decisions of other applicants.
Nevertheless, we include all the possible sets of workers' actions for complete-
ness.

Throughout the entire paper, we consider only pure strategy subgame per-
fect Nash equilibria. Moreover, from the whole set of Nash equilibria (NE)
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that deliver the same payo�s to all the participants, we will distinguish a par-
ticular NE (and call it cNE) with maximum and symmetric application fees
for �rms V1, . . . , Vm, V0. Thus, we implicitly assume a sort of lexicographic
preferences for �rms: �rst �nding sets of Nash equilibria using payo�s that
do not value costs; then �nding contraction of NE in each set by maximizing
costs for the �rms. The next de�nition holds.

De�nition. Let C be a set of pure strategy Nash equilibria for V1, V2, . . .,
Vm, V0 where for each element of this set (i.e., for each strategy pro�le c ∈ C)
utilities of all the universities do not change. Let C be a collection of all these
sets. Precisely,

C = {C ∈ (A1, . . . , Am, A0) : ∀i ∈ 0,m ∀c, c′ ∈ C (c is NE, ui(c) = ui(c
′))}.

De�ne cNE as an injective function cNE : C → (A1, . . . , Am, A0), such that
cNE(C) = c∗ if and only if the next statements hold:

1. c∗ = (c∗1, . . . , c
∗
1, c
∗
0) ∈ C,

2. if ∃c = (c1, . . . , c1, c1) ∈ C, then

c∗1 = c∗0 = max
c=(c1,...,c1)∈C

c1,

otherwise

c∗1 = max
c=(c1,...,c1,c0)∈C

c1, c∗0 = max
c=(c∗1,...,c

∗
1,c0)∈C

c0.

Note that this de�nition is correct in the sense that corresponding c exists
and unique for any C.

If there is no confusion, we may omit subindices in utility functions for
higher-ranked �rms due to symmetry: for any i = 1, . . . ,m, u(p) = ui(p),
U = Ui.

Before considering di�erent cases, let's return to our equation (2) that
de�nes probability p and formulate an important lemma.

Lemma. Probability p of being hired by a higher-ranked �rm is equal to
type θ of a worker if and only if the threshold is equal to 1/2 and the noise
is uniformly distributed on segment [−1/2, 1/2]: x̄ = 1/2, ε ∼ U[−1/2,1/2].

Proof. Let p = θ. Then from (2) we have G(x̄ − θ) = 1 − θ for any
θ ∈ [0, 1]. Since noise ε is symmetric, we have G(x) = 1−G(−x) for any x.
Combining the last two equations, we obtain

G(θ − x̄) = 1−G(x̄− θ) = 1− (1− θ) = θ.
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For θ = 1/2, we have G(1/2 − x̄) = 1/2 and G(x̄ − 1/2) = 1/2. Since G is
absolutely continuous and, therefore, strictly increasing, we necessarily have
1/2 − x̄ = x̄ − 1/2 which implies x̄ = 1/2. Thus, G(1/2 − θ) = 1 − θ.
Considering 1/2 − θ = t, we get G(t) = 1/2 + t which is exactly the cdf of
U[−1/2,1/2].

The opposite direction of the proof is obvious. �
Thus, we can conclude that the type of a worker may be equal to the

probability of being accepted only in one possible scenario. We will consider
this particular case later for m > 2. Meanwhile, we will focus on the sim-
plest case m = 1 and examine behavior of agents under di�erent values of
parameters.

3 Case of two �rms: m = 1

We start with the simplest case of only two institutions: higher-ranked
but risky �rm vs. lower-ranked but safe �rm.

3.1 General case and Equilibria

V1

u(θ)

Wθ

V0

u0(θ)

...

c1 a

c0

1

Figure 2: Case of two �rms.

The game is drawn on Fig 2. The main concern of a worker under given
costs c is whether she should choose a higher-ranked �rm (choice with uncer-
tainty) or a lower-ranked one (safe choice). The marginal utility of applying
to V1 is ap = a(1 − G(x̄ − θ)). The marginal utility of applying to V0 is 1.
Therefore, should a worker of type θ choose between the risky and the safe
choice, she chooses a higher-ranked �rm if and only if p > 1/a. Let's de�ne
the pivotal value of θ by θ̂. Then θ̂ is the root of equation

G(x̄− θ̂) = 1− 1

a
. (3)
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Since G is strictly monotone and for any a > 1 we have 0 < 1 − 1/a < 1, θ̂
is always unique (if it exists).

The next proposition describes all the possible equilibria in this game.
Proposition 1. Let

U1
0 =

∫ 1

0

u0(θ)G(x̄− θ)dF (θ), U2
0 =

∫ θ̂

0

u0(θ)dF (θ),

U1
1 =

∫ 1

0

u1(θ)(1−G(x̄− θ))dF (θ), U2
1 =

∫ 1

θ̂

u1(θ)(1−G(x̄− θ))dF (θ).

Then the game on Fig. 2 has the following set of (subgame perfect) Nash
equilibria (0 6 c1 6 1, 0 6 c0 6 1):

1. if U1
0 > U2

0 , U
1
1 > U2

1 , U
1
1 > 0, then the NE set is (c1, c0), c1 + c0 6 1

with cNE (1/2, 1/2)

2. if U1
0 > U2

0 , U
1
1 < U2

1 , U
1
1 > 0, then the NE set is (c1, 0) with cNE (1, 0)

3. if U1
0 > U2

0 , U
1
1 < 0, U2

1 > 0, then the only NE is (1 + δ, 0)

4. if U1
0 < U2

0 , U
1
1 < U2

1 , U
2
1 > 0, then the NE set is (c1, c0), c1 + c0 > 1

with cNE (1, 1)

5. if U1
0 < U2

0 , U
1
1 > U2

1 , U
1
1 > 0, then the NE set is (0, c0) with cNE (0, 1)

6. if U1
1 < 0, U2

1 < 0, then the NE set is (1 + δ, c0) with cNE (1 + δ, 1).

The proof is in Appendix. �
The degenerate case 6 is probably the most obvious one. V1 does not

enter the market, and V0 gets all the workers. Case 3 is a little bit di�erent.
V1 would like to enter if it could take only workers with types above the value
θ̂. However, V0 is not interested in splitting the market this way and sets
zero costs. Under these conditions (when workers can apply to both �rms),
it is not pro�table for V1 to enter.

Cases 2 and 5 are symmetric in the sense that one �rm would like to
split the market by setting high costs, so workers could not apply to both
institutions. Thus, the only option for the other �rm to �ght for the entire
pool of workers is to set zero costs.

Cases 1 and 4 are the most interesting ones. In case 1, both �rms are
interested in sharing the market. V1 �nds it more pro�table to have appli-
cations from the entire pool of workers but not only from the top, and V0

prefers to take applicants who get rejected by V1 rather than to deal only
with bad workers. We will call it Inclusive Equilibrium for higher m (see
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the next chapter). In case 4, both �rms would prefer to have their own pool
of workers: V1 would like to get rid of low-skilled workers' applications, and
V0 does not want to accept only workers who were rejected by V1. This is
Selective and Restrictive Equilibrium together (they will be separated for
m > 2).

Before moving to examples, we will raise one important question. Assum-
ing that the higher-ranked �rm can choose x̄ itself before setting the costs,
what is going to be the optimal value of x̄ for V1? Let's answer this question
for linear utility functions and uniformly distributed noise.

3.2 Optimal x̄ for Linear Utility Functions

Consider u0(θ) = θ and u1(θ) = θ − α (0 6 α 6 1). It means that the
lower-ranked �rm would be happy to hire any worker from the pool, and the
higher-ranked �rm gets pro�t only from workers with type θ > α. But does
it mean that V1 should set threshold x̄ equal to α in the case of uniformly
distributed type θ? Consider the following example.

Example 1. Let the higher-ranked �rm be twice more valuable than the
lower-ranked one and the noise be distributed uniformly on segment [−l, l],
l 6 1/2. Therefore, we have: θ ∼ U[0,1], a = 2, ε ∼ U[−l,l]. Then from (2)
and (3) we obtain

p =


0, θ < x̄− l,
1
2
− x̄−θ

2l
, x̄− l 6 θ 6 x̄+ l,

1, θ > x̄+ l,

θ̂ = x̄.

The optimal value of x̄ for di�erent α is de�ned in Table 1.

α [0, l) [l, 1− l) [1− l, 1−l+x∗
2

) [1−l+x∗
2

, 1+2lx∗−(x∗)2

2(1+l−x∗)
) [1+2lx∗−(x∗)2

2(1+l−x∗)
, 1]

x̄ 2α− l α 2α− (1− l) x∗ l + α−
√
l2 + (1− α)2

cNE (1,0) (1,0) (1,0) (1,1) (1,1)

Table 1: Optimal x̄ for di�erent α if a = 2, F (θ) = θ (0 < θ < 1),
G(x) = l−x

2l (−l < x < l)

Here,

x∗ = 2 sin

π6 +

arctan

(√
l3(2−l3)

1−l3

)
3

− l.
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1. If x̄ < l, we have the only cNE (1, 0) and the optimal value of x̄ is 2α−l.
This happens due to the bounded support of θ and a �rm's updating. Indeed,
let's assume a �rm gets a signal that a type of a worker is x = l/2. Then the
initial type θ must be uniformly distributed on segment [0, 3l/2] (there are no
values of θ below zero). Taking it into account and calculating the conditional
mean, a �rm obtains E(θ | x = l/2) = 3l/4. Therefore, if α = 3l/4, then the
optimal threshold should be x̄ = l/2. Setting a threshold below l/2, a �rm
hires workers that would deliver negative uitility in expectation. Setting a
threshold above l/2, a �rm loses some workers that would deliver expected
pro�t. This optimal value exists only if 2α − l < l which means α < l. If α
is small enough, the optimal x̄ = 2α− l will be less than α.

2. On this segment, updating does not imply any shifts since the bounds
cannot be reached. The only cNE here is still (1, 0), and the optimal value
of x̄ is x̄ = α. That happens when l 6 α 6 1− l. If the range of the noise is
in�nitesimally small, we have x̄ = α almost everywhere.

3. On this segment, we have an equilibrium shift from (1, 0) to (1, 1).
After this shift, the behavior changes completely.

Table 2 summarizes the �ndings for the extreme case of l = 1/2. Note
that the only point where x̄ = α is 1/2.

α [0, 1/2) [1/2, 0.64) [0.64, 0.81) [0.81, 1]

x̄ 2α− 1/2 2α− 1/2 0.78 1
2

+ α− 1
2

√
5− 8α + 4α2

Table 2: Optimal x̄ for di�erent α if l = 1/2

3.3 Examples

Example 2: Full disclosure. Let ε ≡ 0. It means that �rms can see
the real type of any worker. Then all workers whose type θ is higher or equal
than x̄ would like to apply to V1. The rest would apply to V0. Consider two
cases.

1. U1 =
∫ 1

x̄
u1(θ)dF (θ) < 0. The higher-ranked �rm doesn't get a positive

payo� from its pool of applicants. Thus, the only equilibrium strategy for V1

here is not to enter the market: c1 = 1 + δ. The lower-ranked �rm takes all
workers and receives aggregate utility U0 =

∫ 1

0
u0(θ)dF (θ). Any c0 ∈ [0, 1] is

an equilibrium strategy. cNE = (1 + δ, 1).

2. U1 =
∫ 1

x̄
u1(θ)dF (θ) > 0. Now V1 gets pro�t from participating. The

payo� of V0 is U0 =
∫ x̄

0
u0(θ)dF (θ). The whole square [0, 1]2 ((c1, c0) ∈ [0, 1]2)

will be an equilibrium here. cNE = (1, 1).
Now assume that V1 can choose the threshold. Then the optimal value of x̄

is x̄o = sup{θ : u1(θ) = 0}. For example, in case of linear utilities u1 = θ−α,
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u0 = θ and uniform distribution of workers F (θ) = θ (θ ∈ [0, 1]), the higher-
ranked �rm gets 1 − α workers with aggregate payo� U1 = 1

2
(1 − α)2, and

the lower-ranked �rm gets α workers with aggregate payo� U0 = α2/2. The
total welfare of workers is W = α + a(1− α).

We can see that in the case of complete information, application costs
don't play its strategic role. Since workers know their application outcome,
�rms cannot a�ect workers' decisions by changing the costs. However, the
situation changes completely if the noise becomes substantial.

Example 3. Let ε ∼ U[−1/2,1/2], x̄ = 1/2, u1 = θ−1/2, u0 = θ, F (θ) = θ
(θ ∈ [0, 1]). Calculating the expressions from Proposition 1, we get

U1
0 =

∫ 1

0

θ(1− θ)dθ =
1

6
, U2

0 =

∫ 1/a

0

θdθ =
1

2a2
,

U1
1 =

∫ 1

0

(θ − 1

2
)θdθ =

1

12
, U2

1 =

∫ 1

1/a

(θ − 1

2
)θdθ =

1

12
+

1

4a2
− 1

3a3
.

Under di�erent values of a, we have the following equilibria and payo�s.

• 1 < a 6 4
3
: cNE = (0, 1), U1 = 1

12
, U0 = 1

6
, W = 1

2
+ a

2

• 4
3
6 a 6

√
3: cNE = (1, 1), U1 = 1

12
+ 1

4a2
− 1

3a3
, U0 = 1

2a2
, W = 1

2a
+ a

2

• a >
√
3: cNE = (1, 0), U1 = 1

12
, U0 = 1

6
, W = 1

2
+ a

2

Comparing with the result from the previous example (with α = 1/2), we
can see that noise reduction is pro�table for workers and higher-ranked �rms
but completely disadvantageous for lower-ranked �rms. Under incomplete
information, U0 has a chance to get types higher than just those below x̄.
In other words, a lower-ranked �rm gets an advantage from errors in the
evaluation process.

The last example shows the existence of Inclusive Equilibrium under the
same conditions on the parameters except the distribution of workers.

Example 4. Let ε ∼ U[−1/2,1/2], x̄ = 1/2, u1 = θ−1/2, u0 = θ, F (θ) = θ3

(θ ∈ [0, 1]). Instead of uniformly distributed workers in the previous example,
now we have a distribution skewed towards higher types. Then

U1
0 = 3

∫ 1

0

θ3(1− θ)dθ =
3

20
, U2

0 = 3

∫ 1/a

0

θ3dθ =
3

4a4
,

U1
1 = 3

∫ 1

0

(θ − 1

2
)θ3dθ =

9

40
, U2

1 = 3

∫ 1

1/a

(θ − 1

2
)θ3dθ =

9

40
+

3

8a4
− 3

5a5
.

Again, three cases exist.
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• 1 < a 6 4
√

5: cNE = (0, 1)

• 4
√

5 6 a 6 1.6: cNE = (1/2, 1/2)

• a > 1.6: cNE = (1, 0)

In all cases, at least one of the �rms is happy to get applications from the
entire pool of workers. This happens because the quality of applicants is high.
Thus, U1 is willing to bear with a few low-skilled workers who occasionally
get accepted, and U0 receives a lot of pro�t from high-skilled workers who
get rejected by U1 �by mistake�.

4 Case of three �rms: m = 2

For simplicity, we consider only the most interesting case p = θ (and,
therefore, x̄ = 1/2, ε ∼ U[−1/2,1/2]) throughout the next two chapters.

This case includes competition among higher-ranked �rms that changes
the picture substantially (see Fig. 3). Also, under some values of costs
workers may choose not only between the higher-ranked (θ > 1/2) and the
lower-ranked (θ < 1/2) institutions, but between applying to either both
risky �rms and the safe one (for example, c1 = c2 = 1/2, c0 = 1). In this
case, θ̂ is di�erent. The probability of being hired by at least one of the good
�rms is (1− (1− p)2), so each worker chooses between getting a(1− (1− p)2)
and 1. Solving this, we �nd that if p > 1−

√
1− 1/a, a worker applies to V1

and V2, and otherwise she applies to V0.

V1

u(θ)

V2

Wθ

V0

u0(θ)

...

c1

a
c2

c0

1

Figure 3: Case of three �rms.

Proposition 2 in Appendix describes all the expected utilities of the �rms
for di�erent actions. For each given a, F (θ), u(θ), and u0(θ) we can �nd all
best responses and thus all the possible pure strategy equilibria in the game.
Consider several cases.
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4.1 Positive Valuation of Workers by All Firms

Assume �rst that both higher-ranked �rms welcome all types of workers.
Example 5. a > 2, F (θ) = θ, u(θ) = θ, u0(θ) = θ. The only set of pure

strategy Nash equilibria here satis�es the following condition:

c1 + c2 + c0 6 1.

Firms' expected payo�s are U = 0.2083, U0 = 0.0833. From the entire pool
of workers, 33% go to V0 in expectation and other 67% go to either V1 or V2.
Each �rm gets exactly 1/3 of the entire pool.

The cNE here is (1/3, 1/3, 1/3). Thus, the costs form a negligible portion
of the budget and go to zero when we increase number m of higher-ranked
�rms. We call this Inclusive Equilibrium.

There exists only degenerate cNE (0, 0, 1) if a < 2. Also, we can observe
Inclusive Equilibrium under a > 1.8002 if the pool is skewed towards high-
quality workers (F (θ) = θ2) and under a > 2.2497 if the pool contains a lot
of low-quality workers (F (θ) = 2θ − θ2). See the resulting Table 3.

F (θ) (1/3, 1/3, 1/3) (0, 0, 1)

θ2 a > 1.8002 a 6 1.8002
θ a > 2 a 6 2

2θ − θ2 a > 2.2497 a 6 2.2497

Table 3: Equilibria with Positive Valuation for di�erent F

4.2 Picky Firms

Now assume that the higher-ranked �rms are not interested in bad work-
ers.

Example 6. a = 2, F (θ) = θ, u(θ) = θ − 1/2, u0(θ) = θ. We can see
that V1 and V2 would like to avoid matching with all workers whose type is
θ < 1/2. There are two sets C1 and C2 of pure strategy Nash equilibria that
correspondingly satisfy the following constraints:

c1 + c2 + c0 > 1,

c1 + c2 6 1,

c1 + c0 6 1,

c2 + c0 6 1,

c1 > c0, c2 > c0,

{
c1 + c2 > 1,

c0 = 0.
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Firms' expected payo�s are U = 0.0495, U0 = 0.0833 for C1 and U =
0.0417, U0 = 0.01667 for C2. From the entire pool of workers, 38% go to V0

in expectation, 58% go to either V1 or V2, and 4% remain unmatched in the
�rst case.

The cNE in the degenerate second case is (1, 1, 0). For C1, the cNE is
(1/2, 1/2, 1/2). We can see that costs here form a substantial part of the
workers' budgets, although they leave some room for �exibility (workers can
apply to both risky and safe �rms). We call it Selective Equilibrium. The
di�erence with Inclusive Equilibrium from Example 5 here is that costs do
not converge to zero when m→∞.

Example 7. a = 1.25, F (θ) = θ, u(θ) = θ − 1/2, u0(θ) = θ. Then the
set of Nash equilibria can be de�ned by the following inequalities:

c1 + c2 6 1,

c1 + c0 > 1, c2 + c0 > 1,

c1 6 c0, c2 6 c0.

Firms' expected payo�s are U = 0.0593, U0 = 0.1528. From the entire pool
of workers, 55% go to V0 in expectation, 42% go to either V1 or V2, and 3%
remain unmatched.

The cNE here is (1/2, 1/2, 1). We know this situation as Restrictive Equi-
librium. You can accept an o�er from the safe �rm and thus lose an oppor-
tunity to be considered by better �rms, or you can reject it and have no
safe option available. Such an aggressive policy allows V0 to take 55% of the
market. Notice that it works only if the di�erence between �rms is small
and, what is maybe even more important, workers' relative value of being
hired is much higher.

Examining the entire range of a, we can see that there exists only de-
generate cNE (1, 1, 0) if a > 2 and (0, 0, 1) if a < 1.1655. Two equilibria
described in Example 6 may be observed for all

√
3 6 a 6 2, and only one

Selective Equilibrium is allowed when 1, 2622 < a <
√

3. Restrictive Equi-
librium is supported by 1.1655 6 a < 1.2622. Another interesting situation
may be observed under a = 1.2622.

Example 8. a = 1.2622, F (θ) = θ, u(θ) = θ − 1/2, u0(θ) = θ. There
are two sets C3 and C4 of pure strategy Nash equilibria that correspondingly
satisfy the following constraints:

c1 + c2 + c0 > 1,

c1 + c2 6 1,

c1 + c0 6 1,

c2 + c0 6 1,


c1 + c2 6 1,

c1 + c0 > 1, c2 + c0 > 1,

c1 6 c0, c2 6 c0.
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As before, cNE(C3) = (1/2, 1/2, 1/2), cNE(C4) = (1/2, 1/2, 1). Firms'
expected payo�s are U = 0.0451, U0 = 0.1481 and U = 0.0595, U0 = 0.1481,
respectively. We can see that going down through a = 1.2622, V0 jumps from
Selective to Restrictive Equilibrium, delivering higher payo�s to everyone.
Not taking into account degenerate equilibria, we can see that utility of V0

monotonically increases while a goes down from 2 to 1.1655, but utility of the
higher-ranked �rms goes in the opposite direction with a jump at a = 1.2622.
For the full picture, see Table 4.

a (0, 0, 1) (1/2, 1/2, 1) (1/2, 1/2, 1/2) (1, 1, 0)

1 < a < 1.1655 + − − −
1.1655 6 a < 1.2622 + + − −

1.2622 6 a <
√

3 − + + −√
3 6 a 6 2 − − + +
2 < a − − − +

Table 4: Equilibria for picky �rms and di�erent a (F (θ) = θ)

4.3 Picky Firms and Low-Quality Workers

Example 9. a = 2, F (θ) = 2θ − θ2, u(θ) = θ − 1/2, v0(θ) = θ. There
are two di�erent sets C5 and C6 of pure strategy Nash equilibria here:

c1 + c2 + c0 > 1,

c1 + c2 6 1, c1 + c0 6 1, c2 + c0 6 1,

c1 > c0, c2 > c0

and


c1 + c2 > 1,

c1 + c0 > 1,

c2 + c0 > 1.

Firms' expected payo�s a) in the �rst case: U = 0.0036, U0 = 0.1146; b) in
the second case: U = 0.0156, U0 = 0.1667. Thus, the second equilibrium is
Pareto optimal for the �rms. From the entire pool of workers 58% go to V0

in expectation, 39% go to either V1 or V2, and 3% remain unmatched in the
�rst case, and 75% go to U0 in expectation, 17% go to either V1 or V2, and
8% remain unmatched in the second case.

We can see that cNE(C5) = (1/2, 1/2, 1/2) and cNE(C6) = (1, 1, 1). In
the second equilibrium, �rms use the hardest possible screening to force low-
quality workers apply only to V0. Thus, each worker is allowed to submit only
one application. This is a typical market of scienti�c journals and authors
(if we consider it decentralized). There are good journals where a paper
can easily be rejected and mediocre ones where a paper will most likely be
published. Depending on the quality θ of the article, the author must make
a decision where to submit. The major cost in this case is probably time,
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not money, and it is more or less the same for any journal. It might have
been allowed for papers to be submitted to two di�erent journals (the �rst
equilibrium), but this is not a Pareto optimal strategy for journals.

Example 10. a = 1.25, F (θ) = 2θ−θ2, u(θ) = θ−1/2, u0(θ) = θ. There
are two di�erent sets C7 and C8 of pure strategy Nash equilibria again:

{
c1 + c0 > 1, c2 + c0 > 1,

c1 > c0, c2 > c0

and


c1 + c2 6 1,

c1 + c0 > 1, c2 + c0 > 1,

c1 6 c0, c2 6 c0.

Firms' expected payo�s a) in the �rst case: U = 0.0064, U0 = 0.2987; b) in
the second case: U = 0.0188, U0 = 0.193. From the entire pool of workers
96% go to V0 in expectation, 3% go to either V1 or V2, and 1% remain
unmatched in the �rst case, and 80% go to V0 in expectation, 18% go to
either V1 or V2, and 2% remain unmatched in the second case.

Here, cNE(C7) = (1, 1, 1) and cNE(C8) = (1/2, 1/2, 1). To choose a more
appropriate equilibrium, �x c0 = 1 and focus on the behavior of V1 and V2.
Their part of the game may be characterized by the next payo�s table:

V1 \ V2 1/2 : c1 + c2 6 1 1 : c1 + c2 > 1

1/2 : c1 + c2 6 1 0.0188 0.0064
1 : c1 + c2 > 1 0.0064 0.0064

We can see that strategies 1 are weekly dominated by strategies 1/2 for both
�rms. Restrictive cNE (1/2, 1/2, 1) looks more reasonable here.

Note that pools with high-quality workers (for example, F (θ) = θ2) do
not give us any information because no pure strategy Nash equilibria exist
there. It is not the case in the next subsection though.

We can describe now how our model explains the di�erences in application
costs on American and European Econ PhD markets by di�erent evaluation
of students. Prestigious universities in the US are not interested in enrolling
low-quality students whose possible struggling with the program and bad
placement may worsen the reputation of a school and decrease their teaching
standards. On the other hand, universities in Europe are less competitive and
more socially oriented. More positive evaluation of students in Europe and
existence of Inclusive (European) equilibrium even with skewed to the right
densities may also imply that prospective PhD students' pools in Europe are
of higher quality on average. Of course, this is just a speculation, since we do
not know all the mechanisms behind costs setting. For example, it may be
the case that in some countries in Europe governments require implementing
zero costs.
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5 General Case of m + 1 Firms

Consider necessary and su�cient conditions for some of equilibria from
the previous chapter in the general case.

Proposition 3. Inclusive Equilibrium with C ′ = {c : c1 + c2 + · · ·+ cm +

c0 6 1} and cNE(C ′) = (
1

m+ 1
,

1

m+ 1
, . . . ,

1

m+ 1
,

1

m+ 1
) exists if and only

if∫ 1

0

u0(p)(1− p)mdF (p) >
∫ 1− t
√

1− 1
a

0

u0(p)(1− p)m−tdF (p) (t = 1, 2, . . . ,m),∫ 1/a

0

u(p)(1− p)m−1pdF (p) > 0,∫ 1/a

0

u(p)(1− (1− p)m)dF (p) > 0.

Proposition 4. Selective Equilibrium with C ′′ = {c : ci + cj + c0 >
1, ci + cj 6 1, ci + c0 6 1, c0 6 ci(i, j ∈ {1, . . . ,m})} and cNE(C ′′) =
(1/2, 1/2, . . . , 1/2, 1/2) in symmetric case with maximum costs exists if and
only if∫ 1/a

0

u0(p)(1− p)dF (p) >
∫ 1

0

u0(p)(1− p)2dF (p),∫ 1/a

0

u0(p)(1− p)dF (p) >
∫ 1−
√

1− 1
a

0

u0(p)dF (p),

2

m

∫ 1

1/a

u(p)
1− (1− p)2

2
dF (p) +

1

m

∫ 1/a

0

u(p)pdF (p) >

> max{
∫ 1

0

u(p)
1− (1− p)2

2
dF (p), 0},∫ 1

1/a

u(p)
1− (1− p)2

2
dF (p) > 0.

Proposition 5. Restrictive Equilibrium with C ′′′ = {c : c1 + c2 + . . . +
cm 6 1, ci+c0 > 1, ci 6 c0(i ∈ {1, . . . ,m})} and cNE(C ′′′) = (1/m, 1/m, . . . , 1/m, 1)
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in symmetric case with maximum costs exists if and only if

∫ 1− m
√

1− 1
a

0

u0(p)dF (p) >
∫ 1− t
√

1− 1
a

0

u0(p)(1− p)m−tdF (p),

(t = 0, 1, . . . ,m− 1),∫ 1

1− m
√

1− 1
a

u(p)
1− (1− p)m

m
dF (p) > 0,∫ 1

1− m
√

1− 1
a

u(p)
1− (1− p)m

m
dF (p) >

>
m− 1

m

∫ 1

1− m
√

1− 1
a

u(p)
1− (1− p)m−1

m− 1
dF (p),∫ 1

1− m
√

1− 1
a

u(p)
1− (1− p)m

m
dF (p) >

>
∫ 1

1− m−1
√

1− 1
a

u(p)
1− (1− p)m

m
dF (p) +

∫ 1− m−1
√

1− 1
a

0

u(p)pdF (p).

6 Conclusion

We consider a model of two-sided market where agents on one side (�rms)
set their admission thresholds x̄ and/or application costs c, and agents on the
other side (workers) apply restricted by their limited budget. These thresh-
olds and costs serve as a screening instrument that allows higher-ranked �rms
to regulate number and quality of workers. We �nd the optimal value of x̄
in the simplest case of two �rms for some values of parameters.

The special case of our model reasonably describes a market of prospective
PhD students giving possible insights concerning existing equilibria in North
American and European schools. We also get new information about some
other equilibria that appear in our model, e.g. restrictive equilibria or single
applications. In particular, we show that Restrictive Equilibrium is bene�cial
not only for a weaker �rm but also for a better institution: the latter deals
with a higher-quality pool of candidates. Inclusive (European) equilibrium
may be driven by more positive evaluation of workers (students) and less
competitive environment.
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Appendix

Proposition 1. Let

U1
0 =

∫ 1

0

u0(θ)G(x̄− θ)dF (θ), U2
0 =

∫ θ̂

0

u0(θ)dF (θ),

U1
1 =

∫ 1

0

u1(θ)(1−G(x̄− θ))dF (θ), U2
1 =

∫ 1

θ̂

u1(θ)(1−G(x̄− θ))dF (θ).

Then the game on Fig. 2 has the following set of (subgame perfect) Nash
equilibria (0 6 c1 6 1, 0 6 c0 6 1 if not stated otherwise):

1. if U1
0 > U2

0 , U
1
1 > U2

1 , U
1
1 > 0, then the NE set is (c1, c0), c1 + c0 6 1

with cNE (1/2, 1/2)

2. if U1
0 > U2

0 , U
1
1 < U2

1 , U
1
1 > 0, then the NE set is (c1, 0) with cNE (1, 0)

3. if U1
0 > U2

0 , U
1
1 < 0, U2

1 > 0, then the only NE is (1 + δ, 0)

4. if U1
0 < U2

0 , U
1
1 < U2

1 , U
2
1 > 0, then the NE set is (c1, c0), c1 + c0 > 1

with cNE (1, 1)

5. if U1
0 < U2

0 , U
1
1 > U2

1 , U
1
1 > 0, then the NE set is (0, c0) with cNE (0, 1)

6. if U1
1 < 0, U2

1 < 0, then the NE set is (1 + δ, c0) with cNE (1 + δ, 1).

Proof. Consider all four integrals. U1
0 and U1

1 are aggregate utilities of
V0 and V1, respectively, when c0 + c1 6 1. Indeed, assume any worker can
apply to both �rms. Then the integral bounds are [0, 1]. The higher-ranked
�rm hires the worker of type θ with probability 1−G(x̄− θ) and gets utility
u1(θ). The safe �rm can hire the worker of type θ (and get utility u0(θ)) only
if she was rejected by V1. The probability of this event is G(x̄− θ).

Similarly, U2
0 and U2

1 are aggregate utilities of V0 and V1, respectively,
when c0 + c1 > 1, c0 6 1, c1 6 1. Now workers must choose between two
�rms. The high quality workers (θ > θ̂) choose the higher-ranked �rm, and
the low quality workers (θ < θ̂) choose the safe �rm. Since workers now apply
only to one �rm, everyone who applies to V0 will be hired for sure. However,
the probability of being enrolled to V1 is still 1−G(x̄− θ).

First three cases describe the willingness of V0 to share the market. In
case 1, V1 also wants to share the market. Thus, they both agree on keeping
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the total costs below or equal to the worker's budget. In case 2 though, V1

would like to split the market and hire only the high quality workers. It
means that for any c0 > 0, V1 would be able set c1 6 1 such that c1 + c0 > 1.
The only option for V0 to avoid that situation is to set c0 = 0. Then V1

has to choose between getting U1
1 or leaving the market with U1 = 0. Since

U1
1 > 0, the only equilibrium here is (c1, 0). Finally, case 3 is similar to case

2, but here it is not pro�table for V1 to enter the market (U1
1 < 0). Thus,

c1 = 1 + δ, and V0 gets the entire pool of workers.
Cases 4�5 describe the willingness of V0 to split the market. Again, if

V1 also wants to split, there is no problem with that: case 4 works with
equilibrium c1 + c0 > 1. However, V1 may want to share the market (case 5).
Then we observe the behavior symmetric to case 2.

Finally, the degenerate case 6 describe the situation when V1 does not
enter the market under any conditions. In this case, V0 does not even have
to keep zero costs: any level of participation c0 6 1 would be �ne. �

Proposition 2. The overall expected utilities of all the �rms in the game
on Fig. 3 are the following.

I Utility for V2 (we can get the same for V1 simply by interchanging costs'
subindices 1↔ 2)

• If c1 + c0 6 1 and c1 > c0 then

U =



∫ 1

0
u(p)1−(1−p)2

2
dF (p) c2 + c1 + c0 6 1,∫ 1

1
a
u(p)1−(1−p)2

2
dF (p) + 1

2

∫ 1
a

0
u(p)pdF (p)

∑
ci > 1, c2 + c1 6 1,

1
2

∫ 1

0
u(p)pdF (p) c2 + c1 > 1, c2 + c3 6 1,

0 c2 + c3 > 1

• If c1 + c0 6 1 and c1 < c0 then

U =



∫ 1

0
u(p)1−(1−p)2

2
dF (p) c2 + c1 + c0 6 1,∫ 1

1
a
u(p)1−(1−p)2

2
dF (p) + 1

2

∫ 1
a

0
u(p)pdF (p)

∑
ci > 1, c2 + c0 6 1,∫ 1

1
a
u(p)1−(1−p)2

2
dF (p) c2 + c0 > 1, c2 + c1 6 1,

0 c2 + c1 > 1

• If c1 + c0 > 1 and c1 > c0 then

U =



∫ 1
1
a
u(p)1−(1−p)2

2
dF (p) +

∫ 1
a

0
u(p)pdF (p) c2 + c1 6 1,∫ 1

0
u(p)pdF (p) c2 + c1 > 1, c2 + c3 6 1,

1
2

∫ 1
1
a
u(p)pdF (p) c2 + c3 > 1, c2 6 1,

0 c2 > 1
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• If c1 + c0 > 1 and c1 < c0 then

U =



∫ 1
1
a
u(p)1−(1−p)2

2
dF (p) +

∫ 1
a

0
u(p)pdF (p) c2 + c0 6 1,∫ 1

1−
√

1− 1
a

u(p)1−(1−p)2
2

dF (p) c2 + c0 > 1, c2 + c1 6 1,

1
2

∫ 1
1
a
u(p)pdF (p) c2 + c1 > 1, c2 6 1,

0 c2 > 1.

II Utility for V0

• If c1 + c2 6 1 then

U0 =



∫ 1

0
u0(p)(1− p)2dF (p) c0 + c1 + c2 6 1,∫ 1

a

0
u0(p)(1− p)dF (p) c0 + c1 + c2 > 1, c0 + min{c1, c2} 6 1,∫ 1−
√

1− 1
a

0
u0(p)dF (p) c0 + min{c1, c2} > 1, c0 6 1,

0 c0 > 1

• If c1 + c2 > 1 and min{c1, c2} 6 1 then

U0 =


∫ 1

0
u0(p)(1− p)dF (p) c0 + min{c1, c2} 6 1,∫ 1

a

0
u0(p)dF (p) c0 + min{c1, c2} > 1, c0 6 1,

0 c0 > 1

• If min{c1, c2} > 1 then

U0 =

{∫ 1

0
u0(p)dF (p) c0 6 1,

0 c0 > 1.
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