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Abstract

Introduced by Halpern and Pass (2012), the concept of iterated

regret minimization (IRM) provides solutions that are more reason-

able than ones o�ered by Nash equilibrium (NE) for many games of

interest, such as the Traveler's Dilemma, the Centipede Game, and

many others. For them, we analyzed new data � the IRM approach

prescribes the most pro�table strategy better than NE. Also, we apply

the IRM to the games with continuous strategy sets, such as Colonel

Blotto game and Bertrand-Edgeworth duopoly, and obtain reasonable

pricing and allocating policies.
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1 Introduction

In game theory, Nash equilibrium is considered to be the most common
solution concept. However, in many games this approach and its improve-
ments (see Osborne and Rubinstein 1994) predict outcomes that are far o�
from observed data and/or do not maximize players' expected payo�s. For
example, they seem inappropriate in the Traveler's Dilemma, the Centipede
Game, the Bertrand Competition. Are there any other concepts that would
properly describe the best strategy for these games (and many others)? By
�best strategy� we mean the strategy that maximizes our utility against a
random opponent. To answer this question, we �rst need to mention k-level
thinking (Crawford et al. 2013) and cognitive hierarchy theory (Camerer et
al. 2004). Unfortunately, these concepts have one considerable shortage: a
necessary demand of an initial belief about opponents' actions. Neverthe-
less, even if we do not have any ex ante information or beliefs concerning
our opponent(s), in some one-shot games we can choose the strategy that
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maximizes our expected payo� using the iterated regret minimization (IRM)
concept.

First mentioning of minimizing regret dates back to Savage (1951). Halpern
and Pass (2012) applied this approach to one-shot strategic games and claimed
that the IRM solution concept prescribes the most pro�table strategy in well-
known experiments like the Traveler's Dilemma, the Centipede Game, Nash
bargaining, and many others. According to the authors, IRM does not op-
erate with common belief or common knowledge, in contrast to many other
solution concepts that involve higher and higher levels of belief regarding
other players' rationality. In Nash equilibrium, for example, players are sup-
posed to know the strategy of their opponents. In one-shot games, such
knowledge may seem unreasonable. Thus, if a player just wants to play opti-
mally in some sense no matter what other players do, IRM concept provides
a tool to capture this intuition.

It is also worth mentioning that Renou and Schlag (2008) elaborated their
own minimax regret theory independently of Halpern and Pass. While also
focusing on strategic games and having the same motivation for considering
regret and identical methods in the case of pure strategies, their de�nition
is slightly di�erent. The approach though often provides the same results
because the intuition behind that concept is the same.

While the notion of regret has been signi�cantly developed in decision
theory (from Savage 1951 to Hayashi 2008), works on applying regret to
game theory have been rare. A bargaining problem was considered by Linhart
and Radner (1989), and regret minimization solutions for it appeared to be
much more reasonable than Nash equilibrium. In computer science, a hybrid
solution concept (Nash equilibrium and regret) was examined in pre-Bayesian
games, where each agent's utility depends on both the player's type pro�le
and the action pro�le, but with no probability assigned to types (Hya�l and
Boutilier 2004, Aghassi and Bertsimas 2006).

The motivation and contribution of this paper is the following. On the
one hand, we want to check the credibility of IRM concept by analyzing fresh
experimental data. We consider a general case of the Traveler's Dilemma and
two cases of the Centipede Game with exponential and linear payo�s in the
same way as Halpern and Pass did, but examine new data from recent pa-
pers. These data support the IRM predictions concerning the most pro�table
strategies (but not the actual ones) better than many Nash equilibrium im-
provements. On the other hand, we apply the IRM concept to the games
with continuous strategy sets that were not considered before � Bertrand-
Edgeworth competitions and Colonel Blotto game � and obtain reasonable
price and allocation policies.

Literature and historical reviews open some sections explaining the evo-
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lution and importance of the following problems.

2 Iterated Regret Minimization

To de�ne iterated regret minimization (IRM), we are going to simplify
Halpern and Pass approach. There is no need to use a deletion operator here,
since, in most cases, only two-player games are considered, and the algorithm
demands no more than two iterations.

Consider a noncooperative two players' game in its normal form:

G = (i ∈ {1, 2}; si ∈ Si;ui : S1 × S2 → R).

For each state s−i, let u
∗
i (s−i) be the best1 outcome of player i in state

s−i:
u∗
i (s−i) = sup

si∈Si

ui(si, s−i). (1)

Denote regret of si in state s−i as: regret i(si, s−i) = u∗
i (s−i)− ui(si, s−i).

Then, the minimax-regret decision rule is

sopti = arg inf
si∈Si

sup
s−i∈S−i

regret i(si, s−i).

If sopti is not a singleton, we can continue this process from the beginning,
considering now that Si = sopti . Hence, on the next step, we assume that
agents play one of the optimal strategies and want to �nd one that minimizes
regret under this assumption.

According to Halpern and Pass, the idea of the IRM approach is to hedge
the player's bets by performing reasonably well no matter what the actual
state is. �Reasonably well� is thus dictated by the decision rule: this is the act
that minimizes regret. Intuitively, this rule is literally trying to minimize the
regret that a player would feel if she discovered what the situation actually
was: the "I wish I had chosen s′ instead of s� feeling.

Note. We would like to underline the di�erence between the maximin
and the minimax regret approach. The maximin criterion maximizes the
worst-case pro�t. In contrast, the minimax regret aims at making a less
conservative decision, by minimizing the opportunity cost from making a
suboptimal decision.

1Of course, the "best" element may not exist, that is why we use sup (inf) instead of
max (min) in the de�nition. However, for games with �nite discrete strategy space this
terminology is very convenient, so we roughly reserve it for continuous strategy sets as
well.
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3 The Traveler's Dilemma

This problem is a great example of how close to the best strategy the
IRM prediction can be. It was introduced by Basu (1994). We are going to
formulate it in a general case (Halpern and Pass 2012).

Two travelers have identical luggage, for which they both paid the same
price. Their luggage is damaged (in an identical way) by an airline. The
airline o�ers to recompense them for their luggage. They may ask for any
dollar amount (in natural numbers) between x and x̄. There is only one
catch. If they ask for the same amount, then that is what they will both
receive. However, if they ask for di�erent amounts � say one asks for m and
the other for m′, with m < m′ � then whoever asks for the lower amount will
get m+ r, while the other traveler will get m− r, where r can be viewed as a
reward for the person who asked for the lower amount, and a penalty for the
person who asked for the higher amount.

The only Nash equilibrium (and the only rationalizable strategy pro�le)
here is (x, x). For small p, this result seems unreasonable. Would anyone
interested in maximizing pro�ts ever play x?

Becker, Carter and Neave (2005) asked 51 members of the Game Theory
Society to submit a strategy for the game with x = 2, x̄ = 100, r = 2 (Basu's
case). The strategy that worked best (in pairwise matchups against all sub-
mitted strategies) was 97 with an average payo� $85.09. The worst average
payo� went to those who played 2; it was $3.92. This Nash equilibrium strat-
egy was played by 3 people of 51, while 95 or higher was submitted by 33
participants.

Capra et al. (1999) arranged a sequence of experiments and discovered
that the result heavily depended on r. For small r people tended to play
high values at �rst and keep doing that when the game was repeated. The
higher value of r was given, the lower participants started and the faster
they converged to playing x with time. Note that the Nash equilibrium is
insensitive to the choice of r.

Now consider IRM solution for r 6 (x̄− x)/2. It includes four steps.
1. Following (1), obtain the best outcome (to simplify notation, in sym-

metric games, we will perform calculations for the �rst player by default):

u∗
1(s2) = s2 − 1 + r, s2 ̸= x; u∗

1(x) = x.
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2. Obtain regret:

regret1(s1, s2) = u∗
1(s2)− u1(s1, s2) =



0, if s1 = s2 = x,

r − 1, if s1 = s2 > x,

r, if s1 > s2 = x,

2r − 1, if s1 > s2 > x,

s2 − s1 − 1, if s1 < s2,

3. Minimax calculations: mins1∈S1 maxs2∈S2 regret1(s1, s2) = 2r − 1.
4. Finally, the optimal solutions satisfy x̄−s1−1 6 2r−1, which implies

x̄− 2r 6 sopt1 .
Assuming that a strategy from [x̄− 2r, x̄] is used by both players, we can

iterate this process. Then the desired strategy is x̄ − 2r + 1 (regret here is
2r− 2; all others have regret 2r− 1). In the Becker, Carter, and Neave case,
we have exactly the experimental optimal value: 100− 2 ∗ 2 + 1 = 97.

Now let's examine the data collected by Cabrera, Capra and Gomez
(2007). They designed an experiment that consisted of three cells of one-
shot traveler's dilemma games. Participants were recruited from economics
courses at the University of Malaga in Spain. In all treatments, subjects were
asked to choose a claim between and including 20 and 120; they were told
that the earnings would depend on their decisions and the decisions made by
the persons randomly matched with them. The reward/penalty parameter
for all sessions was equal to 5. The next table summarizes the experimen-
tal design (the absence of a particular claim means that nobody played this
strategy):

Claim 20 22 30 35 46 65 69 70 75 80
N 2 1 1 1 1 1 1 1 1 1

AEM 24.8 26.2 33 37 45.7 60.4 63.1 63.5 66.6 69.6
Claim 82 100 102 105 110 111 115 119 120 Total
N 2 3 1 2 1 2 3 1 4 30

AEM 70.3 79.3 79.6 80.3 81.5 81.3 81.4 81.2 80.5

The median here is 100; the mode is 120; the mean is 86.21. The mean of
AEM (average earnings per match) is 67.5. The standard deviation of AEM
is 19.1.

We can see that the most pro�table strategy is 110, but 111, 115 and
119 are also very close. Theory above gives us the optimal IRM value sopt =
x̄− 2p+ 1 = 120− 2 ∗ 5 + 1 = 111. Players who follow the Nash equilibrium
get the smallest payo� of 24.8.
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4 The Centipede Game

This is another well-known example where empirical observations clash
with answers provided by traditional solution concepts. The game was �rst
introduced by Rosenthal (1981). To make it consistent, we formulate this
game the same way as Halpern and Pass did.

Two players play for a �xed number k of rounds (known at the outset).
They move in turn; the �rst player moves in all odd-numbered rounds, while
the second player moves in even-numbered ones. At her move, a player can
either stop the game or continue playing (except at the very last step, when
a player can only stop the game). For all t, player 1 prefers the stopping
outcome in round 2t+1 (when she moves) to the stopping outcome in round
2t+2; similarly, for all t, player 2 prefers the outcome in round 2t (when he
moves) to the outcome in round 2t + 1. However, for all t, the outcome in
round t+ 2 is better for both players than the outcome in round t.

It can be easily shown by backwards induction that the only Nash equi-
librium here is when both players choose to stop immediately: at the �rst
move for player 1 and at the second move for player 2. However, �rst ex-
periments with linear payo�s (McKelvey and Palfrey 1992, Nagel and Tang
1998) clearly demonstrated that participants tend to cooperate at least for a
certain number of rounds (but rarely throughout the whole game) and thus
get higher payo�s.

Consider two versions of the Centipede Game and obtain optimal strate-
gies for each of them in the IRM framework.

A. Exponential payo�s. Here, the payo� while ending the game at
odd-numbered rounds t is (2t +1, 2t−1 − 1), and the payo� while stopping at
even-numbered rounds is (2t−1, 2t) (see Fig.1).

1 12 2 2

t = 1 t = 2 t = 3 t = 4 t = k

(3, 0) (2, 4) (9, 3) (8, 16) 2
k-1
, 2

k

2
k + 1, 2k-1 - 1

C C C C C

S S S S S

Figure 1: Centipede Game with Exponential Payo�s
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Apply the IRM algorithm:
1. From (1) we get2 (consider k as an even number; for an odd one

calculations are similar)

u∗
1(t) = 2t−1 + 1, t = 2, 4, . . . , k, k + 2;

u∗
2(t) = 2t−1, t = 3, 5, . . . , k + 1, u∗

2(1) = 0.

2. Regret maximization:

max
s2∈S2

regret1(s1, s2) =

{
2k − 2s1 , if s1 = 1, 3, . . . , k + 1,

1, if s1 = k + 1;

max
s1∈S1

regret2(s1, s2) =

{
2k−1 − 2s2 , if s2 = 2, 4, . . . , k − 2,

1, if s2 = k, k + 2,

3. Minimizing, we have: sopt1 = k + 1, sopt2 = {k, k + 2}.
4. Iterating the second time, we �nally get the only strategy (k + 1, k).
Thus, in the case of exponential payo�s, player 1 continues to play until

the very end, and player 2 does the same until the penultimate step.
Note. We used 2 as a base for payo�s, but the argument is correct for

any exponential base a > 1.325 (for k = 4; for higher k, the value of a can
be taken even smaller).

B. Linear payo�s. In this case, the utility of stopping at odd-numbered
rounds t is (t, t − p), while the utility of stopping at even-numbered rounds
is (t− p, t), where p > 1 (see Fig.2).

1 12 2 2

t = 1 t = 2 t = 3 t = 4 t = k

(1, 1 - p)

C C C C C

S S S S S

(2 - p, 2) (3, 3 - p) (4 - p, 4) (k - p, k)

(k + 1, k + 1 - p)

Figure 2: Centipede Game with Linear Payo�s

Since now payo�s increase not so dramatically, we can expect a more
relaxed strategy comparing to the exponential case. Agents may not be
interested in going on until the very end of the game.

2Saying "strategy" in this framework, we mean a set of equivalent strategies: all the
strategies where player �rst stops at t (no matter what her actions are afterwards) are
payo� equivalent for her.
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1. We have u∗
i (t) = t − 1 if i = 1 and t is even, or if i = 2 and t is odd

(t ∈ {2, 3, . . . , k + 2}; u∗
2(1) = 1− p).

2. Regret maximization:

max
s2∈S2

regret1(s1, s2) =


k, if s1 = 1,

max{p− 1; k − s1 + 1} if s1 = 3, . . . , k − 1,

p− 1, if s1 = k + 1;

max
s1∈S1

regret2(s1, s2) =


k − 2, if s2 = 2,

max{p− 1; k − s2}, if s2 = 4, . . . , k − 2,

p− 1, if s2 = k, k + 2.

3. Finally, we get an optimal regret minimization strategy (k+1−2m, k−
2m) for any 1 + 2m 6 p < 3 + 2m (m = 0, 1, . . . , k/2− 1). The more severe
punishment is, the less patient players are.

Now let's introduce new data from papers of (BF) Baghestanian and
Frey (2016) and (ANP) Atiker, Neilson and Price (2011) and see how it
goes along with the model.

(BF): 46 subjects from among the participants at the 28th annual US
GO3 Congress in Black Mountain, NC (August 2012) were recruited. They
were o�ered to play the Centipede Game as described by Nagel and Tang
(1998) (see Fig. 3).

1

t = 1 t = 2 t = 3 t = 4 t = 5

(4, 1)

1 1 1 1 12 2 2 2 2 2

t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12

(2, 5) (8, 2) (3, 11) (16, 4) (6, 22) (32, 8) (11, 45) (64, 16) (22, 90) (128, 32) (44, 180)

(256, 64)

Figure 3: Centipede Game by Nagel and Tang

This is a game with exponential payo�s and k = 12. Next table summa-

3GO is a very popular East Asian board game, involving very signi�cant strategy with
the number of possible games (10761 compared, for example, with the estimated 10120

possible in chess).
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rizes the observations4:

Pl. 1 Choice 1 3 5 7 9 11 13 Total
N 0 0 2 5 4 5 8 24

AEM (4) (8) 15.4 29.5 53.8 72.4 97.9
Pl. 2 Choice 2 4 6 8 10 12 14 Total

N 0 1 1 2 7 4 7 22
AEM (5) 11 20.5 33.9 53.4 71.3 32.7

The mean of player 1 and player 2 choice is 10 and 11 correspondingly.
The AEM were calculated for every strategy of player 1(2) matching every

strategy of an opponent 2(1). We can see that the most pro�table strategy
for player 1 is to go on until the end; for player 2 � stop at the last but one
node. This is exactly what is predicted by the IRM method. The maximum
regrets for player 1 and 2 are:

max
s2

regret1(s1, s2) = {252, 248, . . . , 128,84},

max
s1

regret2(s1, s2) = {175, 169, . . . , 90,74, 116},

so the minimum value in the �rst position is approached playing until the
last node; in the second position � until the last but one node. The Nash
equilibrium strategy happens to be the worst strategy for both players in this
framework.

(ANP): The experiment was conducted during the Fall 2009 semester
at the University of Tennessee, Knoxville, with a total of 202 undergraduate
subjects participated. This Centepede Game is introduced on Fig. 4. This

1

t = 1 t = 2 t = 3 t = 4 t = 5

(20, 15)

1 1 1 12 2 2 2 2

t = 6 t = 7 t = 8 t = 9 t = 10

(16, 22) (24, 17) (18, 26) (28, 19) (20, 30) (32, 21) (22, 34) (36, 23) (24, 38)

(40, 25)

Figure 4: Centipede Game with increasing punishment

is a game with k = 10 and linear payo�s, but slight di�erence from the
linear case in section 2 is that in this model punishment also grows linearly.

4Values in parentheses mean that they correspond to the average payo� of an "imagi-
nary" player, since no one really plays this strategy.
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Observations are summarized in the next table:

Pl. 1 Choice 1 3 5 7 9 11 Total
N 4 27 27 15 17 11 101

AEM 20 23.3 24.2 23.7 22.5 21.5
Pl. 2 Choice 2 4 6 8 10 12 Total

N 9 28 25 20 11 8 101
AEM 21.7 23.2 23 22.8 21.3 19.9

The mean of player 1 and player 2 choice is 5,93 and 6,4 correspondingly.
We can see that the most pro�table strategy for player 1 is to stop at the

node 5; for player 2 � stop at the node 4. However, the variance here is not
as huge as in the exponential case, so one does not lose much stopping at the
adjacent node.

Calculate the optimal strategy of IRM method. The maximum regrets
for player 1 and 2 are:

max
s2

regret1(s1, s2) = {20, 16, 12,8, 10, 12},

max
s1

regret2(s1, s2) = {16, 12,8, 9, 11, 13}.

so the minimum value for the �rst player is approached playing 7; for the
second player � playing 6. It is one node more than introduced by the
experiment. The Nash equilibrium strategy happens to be the worst strategy
for the �rst player and far from the best for the second one.

5 The Bertrand duopoly

Although the discrete version of Bertrand competition was already con-
sidered by Halpern and Pass, we solve here the original continuous version of
the problem just for completeness and to make a bridge to more complicated
Bertrand-Edgeworth duopoly.

We consider the classical Bertrand competition where two �rms produce
a homogeneous product (Bertrand 1883). Here and in the next problem, we
assume that each �rm has zero production costs.5 If normalized demand is 1
at any price up to pM , then payo� for player 1 in this model can be described
as follows:

u1(p1, p2) =


p1/2, if p1 = p2,

p1, if p1 < p2,

0, if p1 > p2.

5This assumption can be made without any loss of generality: it doesn't substantially
a�ect our results.
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There is the only Nash equilibrium in this model with zero prices p1 = p2 = 0
and thus zero pro�ts for both �rms. The so-called Bertrand paradox has
been criticized as a bad description of the real-life behavior (e.g. nine of ten
datasets examined by Slade (1995) considering co�ee roasting, banking, wood
products etc, and suitable for Bertrand competition rejected the hypothesis
of one-shot Nash equilibrium). We'll try to �nd the optimal strategy of agents
in terms of IRM.

The best answer for any strategy p2 ∈ (0, sM ] of an opponent is p1 = p2−ε,
where ε is an in�nitesimal value. Thus, following (1), we have u∗

1(p2) = p2
(due to continuity of the strategy set), and

sup
p2∈S2

regret1(p1, p2) =

{
pM − p1, if p1 6 pM/2,

p1, if p1 > pM/2.

The optimal minimum value can now be easily obtained: popt1 = pM/2.
Regret minimizing �rms in Bertrand duopoly behave in a way that can

be explained as a tacit collusion between the agents (explicit cooperation is
not allowed). This is economically meaningful; moreover, we did not change
neither the model itself no its timing.

6 The Bertrand-Edgeworth duopoly

Here we examine a model of two price setting �rms with capacity con-
straints. It was �rst introduced by Bertrand (1883) and Edgeworth (1925).
Consider the market for a homogeneous good with a demand function D(p)
which is assumed to be continuous and strictly decreasing. Each �rm has a
limited amount of productive capacity Si, i = 1, 2 (not depending on price),
such that D(0) > S1 + S2. Firms set their own prices pi, i = 1, 2 and cannot
cooperate. Thus, the entire market up to its capacity is supplied by the �rm
that announced the lower price. Another �rm serves the residual demand.

Identical consumers choose the lower available price on a �rst-come-�rst-
serve basis. We assume that the residual demand left for the �rm quoting the
higher price is a proportion of total demand at that price (Shubik 1955). If
�rms set the same prices, market gets shared in proportion to their capacities.
Thus, the payo� functions of players are:

ui(p1, p2) =


pi min{Si, D(pi)}, if pi < p−i,

pi min{Si,
Si

Si+S−i
D(pi)}, if pi = p−i,

pi min{Si,
D(pi)
D(p−i)

max{0, D(p−i)− S−i}}, if pi > p−i.

11



D'Aspremont and Gabszewicz (1985) showed that the Bertrand-Edgeworth
competition does not possess any (pure strategy) Nash equilibrium ifD(pM) <
S1 + S2. They introduced the concept of quasi-monopoly (one capacity is
su�ciently bigger than another) that restores the existence of a pseudo equi-
librium. As for a mixed-strategy Nash equilibrium, Dasgupta and Maskin
(1986) and Dixon (1984) proved just its existence but did not �nd what it
looks like. Also, Allen and Hellwig (1986) showed that the average price set
would converge to the competitive one in the case of a large market with
many �rms.

Let's apply the IRM concept to the Bertrand-Edgeworth duopoly model.
Assume for simplicity

D(p) = 1− p, S1 = S2 = S. (2)

Then S 6 1/2 and

u1(p1, p2) =


p1min{S, 1− p1}, if p1 < p2,

s1min{S, 1−p1
2

}, if p1 = p2,

p1min{S, 1−p1
1−p2

max{0, 1− p2 − S}}, if p1 > p2.

(3)

Proposition. In the Bertrand-Edgeworth duopoly with a demand func-
tion, capacities and payo�s de�ned by (2) and (3), with S 6 1/2, we have
an optimal IRM price value

popt1 =
1

2
(1− 3S +

√
1− 2S + 5S2).

Proof. Consider three cases: 1) 0 6 S 6 1/4; 2) 1/4 < S 6 1/3; 3)
1/3 < S 6 1/2. Then

1) u∗
1(p2) =


(
1− S(1−p2)

1−s2−S

)
S, if 0 6 p2 6 1− 2S,

p2S, if 1− 2S < p2 6 1− S,

(1− S)S, if 1− S < p2 6 1;

2) u∗
1(p2) =



(
1− S(1−p2)

1−p2−S

)
S, if 0 6 p2 6 1−3S

1−2S
,

1−p2−S
4(1−p2)

, if 1−3S
1−2S

< p2 6 1+4S−
√
1−8S+32S2

8S
,

p2S, if 1+4S−
√
1−8S+32S2

8S
< p2 6 1− S,

(1− S)S, if 1− S < p2 6 1;

3) u∗
1(p2) =


1−p2−S
4(1−p2)

, if 0 6 p2 6 1+4S−
√
1−8S+32S2

8S
,

p2S, if 1+4S−
√
1−8S+32S2

8S
< p2 6 1− S,

(1− S)S, if 1− S < p2 6 1.
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Further, for all three cases, we have

f(p1) = sup
p2

(u∗
1(p2)− u1(p1, p2)) =

=


S(1− p1 − S), if 0 6 p1 6 1

2
(1− 3S +

√
1− 2S + 5S2),

p1(p1 − 1 + 2S), if 1
2
(1− 3S +

√
1− 2S + 5S2) < p1 6 1− S,

(1− S)S, if 1− S < p1 6 1.

Fig. 5 shows the graph of function f(s1) if S = 0.3. The behavior under
other values of S is substantially the same.

0.0 0.2 0.4 0.6 0.8 1.0

p1

0.05

0.10

0.15

0.20

0.25

f

Figure 5: Graph of function f(p1) if S = 0.3

The only minimum value can be reached when popt1 = 1
2
(1−3S+

√
1− 2S + 5S2).

�
For di�erent values of S, we have a table for corresponding optimal prices:

S 0.025 0.05 0.1 0.2 0.3 0.4 0.5
popt 0.951 0.903 0.811 0.647 0.511 0.4 0.309
pM 0.975 0.95 0.9 0.8 0.7 0.6 0.5

These results have a strong economic sense. For any S 6 1/2, it is
unreasonable for player 1 to make the price less than 1 − 2S. In this case,
there is only a pro�t loss: if player 2 sets a lower price, she can only serve
S of customers, and player 1 serves another S part; if player 2 sets a higher
price, player 1 serves S customers immediately. The fact that the optimal
value can be a little bit more than 1 − 2S follows from the possibility that
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your opponent sets the price even higher. Of course, the higher price you
have, the less this possibility is. For example, in the case S = 0.1 we can see
a very small deviation 0.011 from the "safe" price 0.8, in the case S = 0.3
this deviation 0.111 from the "safe" price 0.4 is quite su�cient. Also, we can
see that the ratio popt/pM decreases with increasing of S.

Despite the fact that these results are derived for the particular function
D(p) and for the symmetric game, the problem can be solved for other types
of demand and nonsymmetric �rms (for some types of D(p) only numeri-
cally). Unfortunately, �nding data for a pure one-shot Bertrand-Edgeworth
competition is problematic, although there are some for repeated games that
demonstrate �Edgeworth cycles� behavior (i.e., see Normann and Fonseca,
2013).

7 Colonel Blotto game

This game was �rst proposed and solved by Borel in 1921 (and translated
into English in 1953) and has been a classic in game theory since then (see
Owen, 1968). Here we consider a two-player version where participants need
to distribute their limited resources (forces) A and B over two battle�elds.
We denote players by A and B as well. The commander allocating more
forces to a battle�eld wins the �rst battle�eld with the payo� α and the
second one with the payo� β. The loser does not get anything. If forces are
equal, the payo� from that battle�eld gets halved. Without loss of generality,
we assume that A > B and α > β. Also consider only the case A < 2B (the
solution is trivial otherwise). Let players A and B distribute, respectively,
forces a and b on the �rst battle�eld (and thus A−α and B−β on the second
one). The corresponding total payo�s of the commanders look like

uA =



β, a < b

β + α/2, a = b

α + β, b < a < b+ A−B

α + β/2, a = b+ A−B

α, a > b+ A−B,

uB = α + β − uA.

There exist no pure Nash equilibrium in this game. Indeed, both players
face the threat of reducing their payo�s (see Fig. 6). Player A has more
resources and thus can always increase her pro�t by deviation. On the other
hand, the maximum payo� α + β for player A that may be achieved in the
"diagonal" domain b < a < b + A − B is also not ensured: player B can
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Figure 6: Colonel Blotto Game payo�s

always deviate towards b = B or b = 0 to increase her own payo� and reduce
the payo� of player A.

However, player A can guarantee her victory on the �rst battle�eld to
ensure the payo� α. It can be done just by setting a > B (player B has no
available forces to overtake player A on this battle�eld). Facing this cautious
behavior of a stronger commander, player B can adjust to it and choose the
best response b < 2B − A to ensure her victory on the minor battle�eld.

Let us consider IRM prediction in this game. For player A, u∗
A(b) =

sup
a

uA(a, b) = α + β. Then

regretA(a, b) =


α, a < b

0, b < a < b+ A−B

β, a > b+ A−B.

Thus,

f(a) ≡ sup
b

regretA(a, b) =

{
α, a < B

β, a > B,

and aopt can be anything from the interval (B,A].
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Analogous calculations can be done for player B:

u∗
B = α, regretB(a, b) =


α− β, b < a− (A−B)

α, a− (A−B) < b < a

0, b > a,

g(b) ≡ sup
a

regretB(a, b) = α,

and bopt can be anything from [0, B].
Iterating this process again for player B using now restriction a > B, we

obtain:

u∗
B = β, g(b) =

{
0, b < 2B − A

β, b < 2B − A

and �nally bopt ∈ [0, 2B − A).
Thus, IRM strategy fully corresponds to our prediction. Unfortunately,

there is a shortage of literature concerning experiments in Colonel Blotto
game. Papers of Modzelewski et al (2009) and Chowdhury et al (2013) con-
sider a su�ciently larger number n of battle�elds (�ve and eight respectively).
Although some general patterns are still observed there (i.e., "guerilla war-
fare" for player B), the behavior becomes di�erent with increasing number
of n.

8 Conclusion

There exist many examples of games where Nash equilibrium and its
improvements a) do not provide us with the most pro�table strategy; b) do
not describe well what people really do. Following Halpern and Pass (2012),
we have considered a solution concept, iterated regret minimization, that, at
least in some games, seems to represent the most pro�table strategy better
than more standard solution concepts. The majority of these games have
undercutting strategies in common, but further work on generalizing the
applicable set of games is needed. Also, the IRM notion seems to capture
the cooperating and altruistic behavior taking place in many experiments and
works relatively well dealing with inexperienced but intelligent players who
play a game for the �rst time. In this one-shot setting, it seems unreasonable
to assume that players know strategies of their opponents (as is implicitly
stated in Nash equilibrium).

This paper applies IRMmethod to the two well known problems examined
by Halpern and Pass (Traveler's Dilemma and Centipede Game) in a general
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case and provides some additional experimental data with analysis for them.
Also, we examine problems with a continuous number of states (Bertrand-
Edgeworth duopoly, Colonel Blotto game) using the IRM concept. In par-
ticular, IRM indicates tacit collusion in Bertrand and Bertrand-Edgeworth
duopolies with a reasonable price setting. As for Colonel Blotto game, we
get well-grounded results that cannot be obtained using standard tools.

A natural next step would be to apply this solution concept to Hotelling
games, contests (i.e. Tullock) and auctions in general, and other mechanism
design problems. Also, it would be very useful to determine conditions on
games under which the IRM approach seems applicable. So far, the nature
of such an accurate prescription of how to behave to get a maximum pro�t
seems unclear.
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