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Abstract

We consider a dynamic model of an oligopolistic market with demand shocks, in which

a storage unit buys and sells over time subject to a capacity constraint. To make progress

in this stochastic game with constraints, we restrict attention to simple heuristics, and we

can characterize the optimal policy of a storage unit in this restricted class of strategies.

The heuristics, the exogenous stochastic process and the capacity constraint interact to

induce rich dynamics. The optimal policy is sensitive to the nature of demand shocks and

to storage capacity. For a fixed capacity, the storage unit internalizes its unilateral market

power; it acts like a monopolist on its arbitrage spread. We uncover a new phenomenon

that we call continuation risk. It is a corollary of market power and induces the optimal

capacity to be interior even absent investment cost. We discuss some implications.

This work applies to any storable commodity such as crops, raw materials or fuels,

and more recently, electricity.
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1 Introduction

Storage is an important step in any value chain in the economy. For any commodity, it

delivers the intertemporal smoothing of consumption and production that so much contributes

to enhancing welfare. In electricity, storage is the innovation that may render the energy

transition feasible, and the essential complement to renewable energy. Yet we know very little

of the economics of merchant storage, that is, the activity of buying and selling commodities

to take advantage of price differences over time. This paper addresses this gap – in part.

In electricity, storage can be the device that soaks up energy produced in the middle of

the day and releases it during the high-demand period. Closer to our purposes, for some

commodities, prices can vary widely and unexpectedly in very short intervals. The Australian

electricity market illustrates the point in Figure 1, but sizeable price swings are also not rare

in California, Texas or the Nordic Market of Europe.1 Like financial traders in securities

markets, storage can take advantage of these unexpected price differences. This is the focus

of this paper.

Figure 1: This sample price sequence of March 16th, 2024 in the National Electricity Market shows
extreme volatility. Source: RenewEconomy, AEMO data.

To tackle this problem we study a stylised model of merchant storage over a long horizon

and rooted in an oligopolistic market. A finite number of sellers play a quantity game. Each

period they produce for immediate sale, as in electricity markets, while demand is subject

to aggregate shocks. These shocks induce a sequence of high and low prices over time. In

Section A.2 we show two sequences of real-life prices that illustrate these variations. A storage

operator can step in to exploit these price differences by implementing the simple idea of

1Denmark, Norway, Sweden and Finland.
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“buying low and selling high” (intertemporal arbitrage), the details of which are in fact quite

complicated and rich because of market power.

A storage operator faces two essential trade-offs: internalising its unilateral market power

(current trades) and continuation (the value of future trades). The novelty lies in how these

well-known trade-offs materialise. On the first account, a storage unit with large enough a

capacity internalises its own market power and thus withholds quantities – bought and sold

– in any period. On the second one, it must have enough capacity to have the flexibility to

fully exploit arbitrage opportunities but not too much so as to not face large costs induced

by excessive buying, which happens with positive probability. The cost of excessive buying

increases in capacity; so capacity entails a trade-off between flexibility and costs. By analogy

to the continuation value of a Bellman equation, we call this the continuation risk. In a

nutshell, with too small a capacity there is insufficient trade in the future but with too large a

capacity that trade can be too costly. Specifically, the storage unit runs the risk of repeatedly

buying and being unable to sell during a prolonged low-demand period. This is illustrated in

Figure 2.

Figure 2: Long sequences of positive and negative shocks on 16 February 2025, South Australia.
AEMO data.

The continuation risk never disappears, except when shocks are governed by a low-

persistence Markov chain; then the continuation risk is negated. This new phenomenon is

unique to merchant storage because it must buy before selling, and is a corollary of market

power.2 Indeed, if capacity is small enough, it is used in full at every opportunity and there is

2Merchant storage differs from consumer storage or producer inventories: the merchant store must both
buy and sell. Consumers only buy while producers only sell, hence they do not face the continuation risk.
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no risk of buying too much. We explore some extensions, including a richer, Markovian shock

structure with more or less persistence in shocks; all confirm our results.

Our model gives rise to a stochastic game first introduced by Shapley (1953), which typi-

cally admits a very large number of equilibria. To make progress, we must limit ourselves to

studying for a restricted class of admissible strategies that we call heuristics rather than the

more desirable unconstrained strategies that remain out of reach. In this restricted class of

admissible strategies we characterize equilibrum and study some comparative statics. Even

with this restriction on the space of admissible strategies for the storage unit, we must also

fix an equilibrium (a behavior) of the sellers; we argue this is a small concession to make. For

two intuitive heuristics, we uncover a recursive structure that is tractable and allows us to

reduce the corresponding value function to a polynomial, which can then be optimised. These

heuristics are not only intuitive, they are also reasonable – as we discuss in Section 3.2.5. As

in any stochastic game, the strategies interact with the exogenous shocks to induce endoge-

nous transitions between states. Here, these transitions are further enriched by constraints on

capacity and on the initial condition to generate novel dynamics. These dynamics can only

emerge because of market power, both in production and in storage, as we show in Section 3.1.

Although stylised, the model we present in this paper can be applied to many commodities

such as fuels, raw materials or electricity by adjusting primitives such as the discount factor,

storage efficiency, or the underlying stochastic process. A low storage efficiency may be used

to model perishable goods. A higher discount factor may apply to frequent trading, such

as electricity; a lower one may be appropriate for crops or iron ore. It can also apply to

market making in securities. Indeed, this intermediation activity shares many characteristics

with merchant storage: assets are bought and sold, a revenue is generated by intertemporal

arbitrage, holding inventory is necessary, the market maker provides insurance to traders and

price impact matters a great deal.3 Like a market maker, the storage operator is distinguished

from other traders by her payoff function. We confine ourselves to a positive analysis; yet that

analysis does lead to some tentative implications for competition policy and market design.

The market is better served by a large fleet of small units; in a centralised market (such as

electricity), a market operator may improve outcomes by offering a measure of insurance. An

3In most market-making models, traders seek to diversify idiosyncratic risk and the market maker supplies
insurance against diversifiable risk. Here the arbitrageur takes advantage of aggregate risk, and so supplies
incomplete insurance.
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important question of market design remains open: how to best determine the bidding space

and clear a market when bidders play dynamic strategies?

This paper is one of very few on the economics of merchant storage, even though the

practice is as old as trading itself. Our work departs from the extant literature because it

seeks to characterise behaviour in a stochastic environment with market power. Samuelson

(1971) first suggests a model of speculative arbitrage with uncertainty, however under perfect

competition. That assumption renders the dynamics moot, whence uncertainty has little

importance. Wright and Williams (1984) suggest the storage of crops increases welfare but

do not solve the dynamic problem – even under perfect competition. Deaton and Laroque

(1992) rationalise the (price) behavior of 13 essential crops by allowing for speculative storage,

however again under perfect competition.

More recently, storage has piqued the interest of economists because of the promise it

presents in electricity markets. Karaduman (2020) is the first to study grid scale storage,

using Australian data. Producers and the storage unit play an infinite horizon game and

market power is internalized. However, Karaduman (2020) does not compute the best reply;

rather he simulates it from the data. Andres-Cerezo and Fabra (2023b) study the question

of market structure with storage but leave aside how storage actually behaves. A producer

enhances its market power by also owning storage: when demand is the highest, the substi-

tutability between storage and generation should be exploited to its fullest, but their joint

ownership induces more quantity withholding. Butters et al. (Working Paper) use California

data to estimate the equilibrium effect of large-scale storage. As the storage fleet expands,

arbitrage revenue decreases, which hinders adoption. In that model, however, storage is as-

sumed to behave competitively. We study the details of buying and selling with market power.

Schmalensee (2022) studies storage investment, which we take as exogenous; he models the

intra-day behavior of storage rather than short-term arbitrage opportunities. Energy gener-

ation and storage are competitive.4 Williams and Green (2022) compute the welfare effects

of storage on the current British market using simulations and so without characterizing any

equilibrium, with time-varying demand and no uncertainty. Geske and Green (2020) do study

arbitrage in a model of imperfect competition with demand uncertainty and diurnal, weekly

and seasonal patterns. In such a complicated environment they must limit themselves to nu-

4Schmalensee (2022) also assumes that storage is fully discharged after the “night-time”, while we let the
storage operator make that decision in equilibrium.
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merical (approximate) solutions to the welfare maximization problem. We show that market

power and uncertainty are critical aspects of the problem.

This paper bears connection to the rich literature on financial arbitrage – see Shleifer and

Vishny (1997), Oehmke (2009) or Dávila et al. (2024) among many others. In these works,

arbitrage is contemporaneous, risk-free and between segmented markets. Our model is one of

intertemporal arbitrage of aggregate risk in a single market.

Finally, there is a parallel between our model and what has become the standard inventory

management problem (Scarf (1993)). Beyond a superficial examination however, the problems

are quite different. The inventory manager minimizes her inventory cost, including holding

cost and the cost of foregone sales; revenue is ignored (or exogenous). Under enough linearity

assumptions, the optimal strategy is the famous (S, s) policy. Our storage operator maximizes

her surplus and so must sell strategically, and the linearity assumptions do not hold.

After laying out the model, we turn to the main analysis of two intuitive heuristics that

we discuss extensively in Section 3.2. As a robustness check, we introduce a richer Markovian

structure to allow for persistence in Section 3.3. Then we discuss vertical integration, draw

some policy implications and conclude. The online Appendix contains the proofs, some illus-

tration of price volatility in a real market (Section A.2) and numerical examples of optimal

bid values.

2 Model

Consider a market with one storage unit, n producers labeled j = 1, 2, ...n, and a pool of

consumers. We simplify institutional details so that retailers and consumers are confounded

and retailing has no cost; another way of saying this is that retailers perfectly reflect the

behavior of consumers. That behavior is described by the demand function D(pt, εt) for each

period t, where εt is a shock distributed according to some commonly known distribution F .

Stochastic demand is isomorphic to stochastic supply. Each of the sellers j produces a quantity

qjt for each period t, and may or may not be subject to capacity constraints. The storage unit

has finite capacity k. In each period, it can either buy up to its capacity, or sell any available
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amount.5 This process can be described formally by a simple equation of motion:

ct = ct−1 + bt −
st
δ
, t ∈ N, c0 = 0. (1)

Here, ct is a current level of inventory (0 ⩽ ct ⩽ k), δ is a round-trip efficiency parameter

(0 < δ ⩽ 1), and bt ⩾ 0, st ⩾ 0.6 A storage operator can only either buy or sell in each period,

so bt · st = 0 – this is a technical characteristic, but also optimal. The market clears if

D(pt, εt) =
n∑

j=1

qjt − bt + st

for any t, where we suppose that players engage in quantity competition.7 Since the nature of

competition is not the primary object of interest, throughout the rest of the paper we consider

a linear demand function:

D(pt, εt) = 1− pt + εt, εt ∈ {−a, a}.

Rather, the goal is to find optimal policies {bt, st}∞t=0 which are the part of a dynamic Nash

equilibrium. We suppose the storage unit has a discount factor β < 1; it is exposed to a

strictly positive interest rate. Depending on the decisions of the storage operator, in each

round there may be either

• n (symmetric) competitors; or

• n+ 1 competitors, with the storage unit having a limited capacity.

This model assembles all the essential characteristics of any storage operation: a long horizon,

buying and selling, uncertain demand and market power. Its interpretation can vary by

adjusting the parameters β, δ or the shock ε and its distribution F . Taking δ small may suit

5When it comes to electricity we make no distinction between power and energy; it is as if a quantity were
either energy or power for a prescribed duration (e.g. for the trading interval).

6This law of motion is the same as that of the standard inventory management problem It = It−1+Rt−Dt.
However, beyond this similarity, the problems are very different: the storage unit maximizes revenue minus
cost, both endogenous, while the inventory manager minimizes inventory cost.

7Even through the norm in electricity markets is to use the more elegant supply-function equilibrium
(SFE), this model remains relevant. First, the Cournot outcome is a possible equilibrium outcome of the
SFE and constitutes an upper bound for the payoffs to suppliers (Klemperer and Meyer (1989)). Second,
Cournot competition is used as a successful proxy in many papers (Acemoglu et al. (2017), Willems et al.
(2009), Lundin and Tanger̊as (2020)); much of this work relies on the estimations of Borenstein and Bushnell
(1999), Borenstein et al. (1999) or Bushnell et al. (2008).
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perishable commodities like crops while for iron ore δ may be arbitrarily close to 1. In the

electricity market, δ is measured at 0.8-0.9 for batteries and about 0.65 for pumped hydro. A

large value of β applies to very frequent trading, like electricity or securities; a low value of

corresponds to a lower frequency, say, commodities. Let
∑n

j=1 q
j
t = Q−i

t , the objective of the

storage operator is

E

[
∞∑
t=0

βtpt(Q
−i
t + bt − st) · (st − bt)

]
, (2)

subject to the law of motion (1) and the important capacity constraint

0 ⩽ c ⩽ k, (3)

with corresponding value function

V (c) = sup
b,s

E

[
∞∑
t=0

βtpt(Q
−i
t + bt − st) · (st − bt)

]
8, (4)

in which the inventory c is the state variable of interest.

3 Trading over the long horizon

This section begins with a competitive benchmark that is useful to illustrate the salience of

market power in this problem. The main analysis, with market power, relies on independent

shocks. We also present some robustness checks.

3.1 Competitive storage

Suppose storage is a competitive industry; the objective function of any such operator is

a simplified version of (2):

E

[
∞∑
t=0

βtpt · (st − bt)

]
, (5)

subject to the same law of motion and the same capacity constraint, and where the price pt

is not a function of (st, bt). One can write a value function too, as in (4), but it is not really

necessary to arrive at the conclusion that the problem is easily solved. With a payoff function

8We dispense proving that the Dynamic Programming Principle holds in this environment, which is quite
standard.
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that is linear in quantities, a competitive storage unit sells all it can, so qs ∈ {0, c}; from the

demand function D(pt, ε), qs differs from 0 only under a positive shock. To maximize that

payoff, it must buy all it can: qb ∈ {0, k} and differs from 0 only under a negative demand

shock, so that c ∈ {0, k}. The corresponding buying and selling prices are, respectively,

p̂b =
1− a

n+ 1
<

1 + a

n+ 1
= p̂s.

A storage unit that is not strategic simply repeats that static optimum. Even if the game

has a long horizon, there are no intertemporal linkages because competitive storage units

do not withhold quantities, therefore there is no “carry-over” between periods. Absent in-

tertemporal linkages, there is no other solution to this problem. Quantity-withholding (or the

infra-marginal effect) is rooted in market power and is the source of all dynamics. This is the

focus of the ensuing analysis.9

3.2 Independent binary shocks

Now we turn to the problem with market power – solving (2) rather than (5). Consider

the simple independent shock structure

Pr(ε = −a) = Pr(ε = a) = 1/2,

which affords us some tractability. Even then, short of constructing equilibria that exhibit

features the analyst seeks, it is impossible to characterize an optimal strategy analytically .

But we wish to make progress to answer a practical question. To overcome this problem, we

reduce the space of admissible strategies in two ways. First, we must describe the equilibrium

behavior of the other n players. We elect to restrict attention to the repetition of the Cournot

equilibrium stage game. This is a genuine equilibrium of the dynamic game between producers

(see Tirole (1988), Chapter 6, for example) and it is simple to describe, unlike any of the more

sophisticated equilibrium strategies one can construct. A further justification is the work

9If producers are competitive, they sell at marginal cost (absent in our model); when producers have convex
marginal costs, a storage operator buys in period of low demand at a price equal to the low marginal cost and
sells in period of high demand at a price equal to the high marginal cost. Because of competitive pressure that
is all it can do and there is no economic incentive to withhold quantities. This is a simpler stochastic control
problem, where prices are exogenous to the problem of the storage operator.
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of Bonatti et al. (2017), who study a dynamic Cournot model under incomplete information

with learning. The equilibrium converges to the repeated static Nash equilibrium; we start

from this point. Second, we restrict the space of strategies to intuitive heuristics, which allows

us to reduce the value function of the storage operator to a polynomial function. While these

heuristics commit the storage operator to a fixed behavior over time, this property is not

essential to our results in a sense we make precise in Section 3.2.3.

The recursive equations characterizing the solution to (4) may be written as:



V (c) = 1
2

(
−1−a+b(c)

n+1
· b(c) + βV (c+ b(c))

)
+1

2

(
1+a−δs(c)

n+1
· δs(c) + βV (c− s(c))

)
,

V (0) = 1
2−β

(
−1−a+b(0)

n+1
· b(0) + βV (b(0))

)
,

V (k) = 1
2−β

(
1+a−δs(k)

n+1
· s(k) + βV (k − s(k))

)
,

(6)

where (1) and (3) imply 0 ⩽ b(c) ⩽ k − c and 0 ⩽ s(c) ⩽ c for any c. The function b(c) is the

quantity storage would like to buy if its inventory is c; it is different from 0 only if the shock

is negative. Likewise, s(c) is the quantity storage with inventory c would like to sell, which is

relevant only under the positive shock. We aim to find functions b(c) and s(c) that maximize

V (0) from time 0 and subject to (1) and (3). Given the nature of the stochastic process, it is

immediate that V is time-invariant.

3.2.1 Heuristic 1: proportional bids

Our first heuristic calls for constant fractions in buying and selling. For example, starting

from empty, if the chosen fraction is 3/4, the storage operator buys 3k/4 = c, which is now

the new inventory. If facing another negative shock, she buys 3(k − c)/4 = 3k/16, now the

inventory is c = 15k/16. If facing a positive shock instead, she sells 3c/4 = 9k/16, so the

inventory is c = 3k/16. And so on. More formally, b(c) = r(k − c) or s(c) = rc, respectively

(0 ⩽ r ⩽ 1). This problem is rendered complicated for two reasons. First, the constraint

0 ⩽ c ⩽ k implies that, while the action (buy or sell) is governed by the stochastic shock,

its quantum depends on the state c. Second, the grid of the state space grows exponentially

(if r < 1); boundaries are never reached. In addition, a storage unit cannot start from an

arbitrary state, but it must commence at c = 0. Hence it can be stuck at that level for
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some period before being able to buy and start trading. Nonetheless there exists a recursive

structure that can be exploited. Let b(c) = r(k − c) and s(c) = rc and

B(rk) =
1− a+ rk

n+ 1
· rk, A(rk) =

1 + a− δrk

n+ 1
· δrk.

denote the purchasing cost and sale revenue, respectively. In each of these, rk (δrk) is a

quantity and the rest of the expression is the clearing price. Clearly, it cannot be optimal to

buy when the shock ε is positive, nor can it be optimal to sell when it is negative. Then we

show the value function V (c) reduces to a polynomial.

Proposition 1. The overall expected profit of storage is

UP
s =

1

2[1− (1− r)β]

(
−B(rk) +

βr

2(1− β)
(−B(rk) + A(rk))

)
+

β

1− β

k2r3(1− r)(1 + δ2)

4(n+ 1) (1− (1− r)2β)
. (7)

The proof of this Proposition, as all others, is relegated to the Appendix.

Expression (7) entails three elements, abstracting from the multiplier that is a modified

discount factor. The first term in the bracket is the cost of the initial purchase. The second

term is the discounted arbitrage profit from the first trade onward; this is the simple “buy low,

sell high” mantra. A round trip of buying and selling takes two periods minimum, multiplied

by the fraction r. The last term is strictly positive and not at all connected to arbitrage since

it is independent of a. It represents the benefit of flexibility in the face of uncertainty. Indeed,

when r = 1 this last term is zero, and all the weight is assigned to the arbitrage revenue. For

r < 1, facing a series of negative shock, for example, the storage unit buys less and less. But

upon a reversal, it sells a lot. This term is largest for some interior value, which captures this

notion of flexibility that arises from the asymptotic behavior of this heuristic. We call this

the “continuation risk”, and come back to this point later.

The payoff given in (7) is expressed in terms of the capacity k of the storage unit and its

choice of heuristic r. This allows us not only to find the optimal proportion r to maximize

UP
s , but also to engage in comparative statics with respect to k. The first-order condition

of (7) does not lend itself to easy manipulation nor interpretation, but Condition (7) can be

graphed. To this end, let n = 2, δ = 0.95, and β = 0.95. Consider payoffs values for different
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capacities and shock magnitudes. Figure 3 corresponds to high shocks a = 0.6 with capacity

k moving from 0.15 to 1.15, and Figure 4 corresponds to low shocks a = 0.2 where k changes

from 0.05 to 0.3.

0.2 0.4 0.6 0.8 1.0
r

-0.2

-0.1

0.1

0.2

0.3

U

k:

0.15

0.35

0.55

0.75

0.95

1.15

Figure 3: Payoff functions UP
s (r) for different capacities k when the magnitude of the shock is high:

a = 0.6. Payoffs are maximized for an interior capacity level.

0.2 0.4 0.6 0.8 1.0
r

-0.02

-0.01

0.01

U

k:

0.05

0.1

0.15

0.2

0.25

0.3

Figure 4: Payoff functions UP
s (r) for different capacities k when the magnitude of the shock is low:

a = 0.2. Payoofs are maximized for a low capacity level.

First we see that for small relative capacity k/a, it is optimal to buy and sell in full at each

opportunity. It is easy to understand: with a small capacity, the storage unit cannot wield

much market power, so the arbitrage spread is not eroded. Second, from the lowest relative

capacity, the maximum of the payoff function UP
s increases as capacity expands, however

only to a point. Third, concurrently, as relative capacity increases, the optimal proportion r

decreases: large storage units use less of their capacity in any single trade. This is apparent

from A(rk) and B(rk): the arbitrage term (A−B) rapidly decreases in k.
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We also see that very small values of r deliver no surplus at all even though there are no

fixed costs; this is apparent from (7): at r close to zero, there is neither arbitrage (A−B ≈ 0)

nor flexibility. These “frictions” can be explained too: when r is very small, the quantities

traded keep decreasing rapidly and become negligible in finite time. This nullifies the arbitrage

spread A(rk) − B(rk), so the continuation value after the first purchase rapidly becomes

negligible, but that first purchase is a cost.

Finally, very small shocks cannot sustain the operations of a storage unit, as we see from

Figure 4. This is easy to understand: with small shocks ε, the spread can only be small. Any

quantity bought or sold by the storage unit erodes it, and a (relatively) large capacity easily

nullifies that spread for any choice of r.10 This can also be seen from the profit function (7),

which is linear in a but quadratic (negative) in k.

There are considerable subtleties to these findings, the discussion of which we postpone

until after presenting our second heuristic.

3.2.2 Heuristic 2: constant quantities

Here the storage operator buys or sells a constant quantity X each period, starting from

empty as well. To avoid having to deal with partial fills at the boundaries, we let X := k/m,

so m ∈ N is the number of steps to move from empty to full. In the set of admissible strategies,

restricting m to be an integer may not be fully optimal, but we expect the corresponding loss

to be small – if it exists.11

The constraints at 0 and at k matter even more here than in the proportional case, where

the storage unit can never be completely full nor completely empty in finite time. Here it

becomes completely empty or completely full with positive probability. This induces rich

dynamics that we label “waves”. Handling these waves is the main challenge in this otherwise

simple environment. First let

B

(
k

m

)
=

1− a+ k/m

n+ 1
· k

m
, A

(
k

m

)
=

1 + a− δk/m

n+ 1
· δ k

m
.

It is worth investing a little time to describe the stochastic process under this heuristic.

Consider a standard binomial tree representing the state space as drawn in Figure 5.

10Even though the relative capacity k/a is almost constant for each choice k across Figures 3 and 4.
11This is actually duly verified in Section 3.2.4.
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0
t

B

A

B

A

A

B1 2 3 4

k
m

− k
m

2k
m

−2k
m

Figure 5: Evolution of the state of charge without constraint. A and B available in any point as in
standard binomial tree.

Because an empty unit cannot sell (aka, no short-selling), starting from zero, truncate this

binomial tree from below – this leaves the top half of the tree, as in Figure 6. In this Figure,

the light gray area is the region where the probability weights that cannot go down start going

up instead. This changes the probabilities of reaching any node; for example, the point with

coordinates (1, 0) can be reached from the preceding node (0, 0), whereas in the unconstrained

binomial tree (Figure 5), it can never be reached. Likewise for the point (2, 1), which can be

reached from (1, 0) in the truncated tree but never in the unconstrained tree. In turn this

affects the probability of reaching (3, 1), which is accessible in both cases. The states with

affected probabilities are marked with a thicker dot.

0
t

B

B

B
A

B

B
A

B
A

1 2 3 4

k
m

2k
m

3k
m

Figure 6: Evolution of the state of charge with no short selling. There is no A in state c = 0.

A full unit cannot buy. So truncate this tree further from above at the capacity level k.

This is depicted in Figure 7. The admissible state space is limited to that tunnel. Hitherto

unreachable states can be reached, and the probability mass on already reachable states can
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be changed. In Figure 7 the darker gray area represents a second region, in which the upper

bound k becomes active and forces the probability mass back down; hence the waves. This

process continues on over the infinite horizon, and the successive reflections at the boundaries

perpetuate these waves.

0
t

B

B

B
A

B

1 2 · · ·

. .
.

m−1 m1 m+1 m+2 m+3

k
m

2k
m

(m−1)k
m

k

...

Figure 7: Introduction of a second constraint: capacity at k. Here there are three types of thickness
of points (states), depending on how many waves affect the corresponding probability (here, 0, 1, or
2). There is no A in state c = 0 and no B in state c = k.

These waves are periodic, which suggests a recursive structure can be uncovered. We are able

to exploit this and compute the value function of the storage operator for this heuristic too.

Proposition 2. The overall expected profit of the storage operator is

UC
s =

−B(k/m) + βA(k/m)

2(1− β)
− A(k/m)

β

∞∑
i=1

(
β

2

)2i(
Ci−1

2i−1 +
β

2
Ci

2i

)

+
1 + β

β

(
B

(
k

m

) ∞∑
j=0

(
β

2

)(m+1)(2j+1) ∞∑
i=0

(
β

2

)2i

Ci
2i+(m+1)(2j+1)

− A

(
k

m

) ∞∑
j=1

(
β

2

)2(m+1)j ∞∑
i=0

(
β

2

)2i

Ci
2i+2(m+1)j

)
. (8)

Using the formula
∞∑
i=0

βiCi
2i+r =

2r√
1− 4β

(
1 +

√
1− 4β

)r
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from Graham et al. (1994) (p. 203) and introducing the new discounting coefficient

β̃ =
β

1 +
√
1− β2

,

(8) rewrites more compactly as

UC
s =

1

2(1− β)

(
−B

(
k

m

)
+ β̃A

(
k

m

)
(9)

− 2
√

1− β2

β

β̃
m+1

1− β̃
2(m+1)

(
−B

(
k

m

)
+ β̃

m+1
A

(
k

m

)))
.

In (8), the C l
n terms are binomial coefficients; (9) is a a lot easier to understand and

can be decomposed in three parts (rearranging some terms). The first part, rewritten

1
2(1−β)

(
−B

(
k
m

)
+ A

(
k
m

))
, is the discounted sum of the risk-free arbitrage spread −B + A

(again, the mantra “buy low, sell high”), which results from the unconstrained process repre-

sented in Figure 5. Now subtract the “short-selling” revenue (1−β̃)A because of the constraint

0 ≤ c shown in Figure 6. The last part is the cost of observing the capacity constraint c ≤ k

– the object of Figure 7 – and all the subsequent repetitions of the constraints 0 ≤ c ≤ k that

follow because of the waves.

This last terms embeds what we call the “continuation risk”: the storage operator may

keep buying and fail to sell for a long time, which renders the operation unprofitable.12 It takes

a different form from (7) as a enters directly; more importantly, so does m (as r enters the last

part of (7)). Perhaps counter-intuitively, the constraint c ⩽ k actually helps: it caps losses

from buying “forever” – the term B(k/m) enters positively. This last term also showcases a

trade-off in the number of steps m to buy and sell: for large enough m, −B + β̃m+1A turns

negative, but then the multiplier in front of that bracket converges to zero. Too few steps

are bad, and so are too many; indeed in Figure 8, m is clearly interior–just as the optimal

r is interior. The payoff function (9) thus differs from (7) for with proportional bids, the

boundaries are never reached (once the lower boundary has been exited).

As with the proportional case, we graph this function using the same parameters as before.

The dots on the curves correspond to the actual choices that are possible – a fixed quantity,

e.g. 0.5. Let n = 2, δ = 0.95, and β = 0.95. Figure 8 shows high shocks a = 0.6 with capacity

12We further explain and discuss the continuation risk in Section 3.
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k moving from 0.15 to 1.15, and Figure 9 depicts low shocks a = 0.2 where k changes from

0.05 to 0.35.

k:

0.15

0.35

0.55

0.75

0.95

1.15

Figure 8: Payoff functions UC
s (r) for different capacities k when the magnitude of the shock is high:

a = 0.6. Payoffs are maximized for an interior capacity level.

k:

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 9: Payoff functions UC
s (r) for different capacities k when the magnitude of the shock is low:

a = 0.2. Payoffs are maximum for a low capacity.

Overall Figures 8 and 9 complement nicely Figures 3 and 4; they simultaneously enrich them,

and confirm the overall message. That is, the optimal quantity choice is interior except for a

very small capacity, and rapidly much less than k as capacity increases. In turn the optimal

capacity choice is also interior so as to not wipe out the arbitrage spread with the continuation

risk. Finally, too small a shock induces too small a spread, which cannot sustain storage.13

13In the context of electricity, there is an implicit relationship between m and storage duration: when
m is large, storage can (dis)charge for longer. But (i) this also implies a lower power output and (ii) it is
determined optimally by the operator rather than being a technical characteristic.

17



3.2.3 The main point

Up to some details, the two heuristics we study lead to the same conclusions. Fix a

capacity, the storage operator is a monopolist on its arbitrage opportunities. Its profit function

is concave in the variable of interest (be it r or m) and it internalises the well-known trade-off

between the extensive margin and the intensive margin. This is the usual market power effect.

Note now for the next point that the quantities traded in equilibrium are approximately the

same for the pairs (k, r) and (k,m) – see Section A.3 of the Appendix.14

Capacity also entails a trade-off – even if not quite a choice variable but rather a parameter

in this model. With a small capacity, the storage operator moves rapidly from one boundary

to another (e.g m = 1), where she gets stuck with positive probability in a sequence of

unfavourable shocks. For example, a sequence of negative shocks when already full (c = k). A

larger capacity allows the storage unit to delay hitting (or approaching, for r < 1) a boundary;

it provides the flexibility necessary to fully exploit all trading opportunities – see Figure 7.

So, starting from a low level, increasing capacity increases payoffs. But this is not monotone;

too large a capacity is costly too. Facing a string of negative shocks, a large-scale unit keeps

purchasing and keeps delaying selling. This delay compounds, and does so all the more with

a large capacity. To see this, consider the following deterministic example: buy and sell in

one step, which yields the knife-edge payoff −B(k1) + βA(k1) = 0, and in two steps, yielding

−B(k2/2)−βB(k2/2)+β2A(k2/2)+β3A(k2/2) < 0 (since the actual quantities are constant).

In other words, there exists a trade off between flexibility to exploit trading opportunities –

for example, m = 5, m = 6 in Figures 7 and 8 – and the compounding cost of delay in selling.

We call this phenomenon the “continuation risk”; it is solved by an interior optimal capacity.

The notion of continuation risk is important and our labeling of it careful. For a small

capacity, there is too little continuation trade when stuck at the boundary; for a large capacity,

there is too much continuation (buying). The cost of too much continuation is rooted in the

geometry of the constrained Pascal triangle shown in Figure 7: it is asymmetric as a storage

unit must first buy. If short-selling were allowed, this problem would not arise. We emphasize

the continuation risk is moot absent market power, for then the unit buys and sells in full at

every opportunity, so there is no risk of buying too much.15

14We compute the quantities corresponding to each m (and r); they increase slightly for the proportional
heuristic, but are almost constant for the second one.

15Another way of seeing the continuation risk is connected to excessive buying, return to Figure 8: the choice
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The skeptic may argue the strategies we study are too rigid in that they commit the storage

unit to the same action regardless of the state c. Why keep buying as one approaches full

capacity? First, this is strictly true only under the constant-bid heuristic; under proportional

bids, r is constant but the quantities traded keep declining. Second, under a less committal

strategy, a large-capacity unit could stop buying after some steps and wait for a reversal –

that is, stop increasing its cost. But this is exactly the same as choosing a smaller capacity.

Indeed, the optimal capacity really determines the maximum payoffs for any heuristic where

these payoffs are a function of k.

3.2.4 Robustness check: a more general version of constant bids

Here we want to better understand how much is lost from simplifying the constant-bids

heuristic to factors of k – i.e. X = k/m. In this section we relax this simplification (so,

X ̸= k/m). In Figure 10 we show the event tree for the case k/2 < X < k.

0
t

B(X)

A(X)

B(k − X)

B(X)

1 2 3 4 5

· · ·

k −X

X

k

Figure 10: All possible trajectories for the state of charge c in the first five periods across four possible
states when k/2 < X < k.

Even with this more flexible structure (and k/2 < X < k), there are only four possible states:

0 (empty), X, k −X, and k (full). The main difference from the previous case is that when

storage is in state X and faces a negative shock again, it cannot buy X units again. Instead,

it has to buy the remainder to its full capacity, which is k−X < X. Starting from 0, storage

buys up to X as soon as it can and that step is large. Then either it sells that quantity or

buys k −X and thereby exhausts its capacity; here that step is small. The same thing works

of m = 2 for k = 0.35 is improved upon by a quantity increase for m = 3 when k = 0.55, but the quantity
corresponding to m = 5 when k = 0.95 is essentially the same. So why is the payoff lower then? Clearly, it
cannot be the impact of quantities; rather it is the continuation risk, the cost of which now dominates.
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in the other direction: when the storage unit only holds k−X and faces one more consecutive

positive shock, it can sell only the remaining capacity k −X to become completely empty.

A finer structure allowing for more steps has k/(m + 1) < X < k/m, m ≥ 1, and we

immediately see from Figure 10 that for any m ≥ 1, only the last step in either direction

may be curtailed – just as for for two steps. We are able to obtain expressions for the storage

payoffs for k/3 < X < k/2, k/4 < X < k/3, and k/5 < X < k/4. Analytical results for

smaller X (that is, m ⩾ 5) are out of reach because of the expanding size of the transition

matrix.

Proposition 3. Assume the storage unit sets constant bids X (k/(m+1) < X < k/m) when

it buys under any state different from mX or when it sells under any state different from

k−mX. Otherwise, the storage unit bids k−mX when it either buys under state mX or sells

under state k −mX. The expected profit of storage reads:

1. For 1/2 < X < 1 (m = 1):

UX
s = −1

2

(
B(X) +

β

2− β
B(k −X)

)
+

β

4

(
D(X) +

β2

4− β2
D(k −X)

)
; (10)

2. For 1/3 < X < 1/2 (m = 2):

UX
s = − 1

2− β

(
B(X) +

β2

2(2− β2)
B(k − 2X)

)
(11)

+
β

4− β2

(
D(X) +

β4

8(2− β2)
D(k − 2X)

)
;

3. For 1/4 < X < 1/3 (m = 3):

UX
s = − 1

2(2− β2)

(
(2 + β)B(X) +

β3

4− 2β − β2
B(k − 3X)

)
(12)

+
β

8(2− β2)

(
(4− β2)D(X) +

β6

(4− β2)2 − 4β2
D(k − 3X)

)
;

4. For 1/5 < X < 1/4 (m = 4):

UX
s = − 1

4− 2β − β2

(
2B(X) +

β4

2(4− 3β2)
B(k − 4X)

)
(13)

+
β

(4− β2)2 − 4β2

(
2(2− β2)D(X) +

β8

4(4− β2)(4− 3β2)
D(k − 4X)

)
;
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where D(X) is the NPV of the arbitrage spread:

D(X) =
A(X)−B(X)

1− β
.

Echoing the introductory example, the first term in all these formulae is the initial purchase

cost, and the second one is the arbitrage spread. Both are suitably discounted.

3.2.5 Discussion: comparing heuristics, capacity constraints and demand speci-

fication

Comparing heuristics. In Figures 11 and 12 we directly compare the performance of the

heuristics we study and of the more flexible approach (still restricted to 1/5 < X < 1) of

the preceding section. Red represents proportional bids, blue stands for constant bids with

integer m, and purple shows the payoffs from bids for any X ∈ (k/5, k). The graphs of these

payoff functions feature kinks at each of the integer m because altering m amounts to altering

the regime under which the storage unit operates. The first series is concerned with relatively

large shocks (a = 0.6), and the second one with small shocks (a = 0.2).

First, it is difficult to globally rank the two main heuristics. While constant quantities

do not systematically dominate proportional bidding, the maximum always exceeds – at least

weakly – the maximum achieved under the proportional rule, but this may be sensitive to the

parameter values we use. We can also see that as capacity k increases, the proportional-bid

heuristic performs better. That is, the proportional heuristic better internalises the continu-

ation risk – without completely negating it. This improvement stems from the more flexible

nature of this heuristic, which (i) never reaches the boundaries for any r < 1, (ii) commits

the storage operator to trade ever smaller quantities (in a sequence of identical shocks) and

(iii) allows for the event tree of the binomial process to grow without bounds. Further, for

r large enough, as soon as reversal does occur, the quantity traded at the first favourable

shock, is large. This is an approach that is both more prudent and more flexible and performs

comparatively better when capacity is large–that is, precisely when the continuation risk is

more acute.

Indeed, for large shocks and large capacity (the four bottom panels of Figure 11), the max-

imiser under the proportional rule lies to the right of the maximiser under constant bids, and

the constant-bid heuristic clearly dominates for (many) small steps. Second, under constant
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quantities, a storage unit is immune to the (small) losses that accrue under the proportional

heuristic when the quantities are very small. Under constant bids, the quantities never become

vanishingly small, so the arbitrage revenue is never negligible. Finally we can see that large

shocks are completely essential to profitable trading, as seen in Figure 12.

Of course these differences in behaviour stem from the difference in the stochastic process

that is induced by the choice of heuristic. That is, the heuristics interact with the exoge-

nous stochastic process to define an endogenous process; this is what defines a stochastic

game Shapley (1953). Under the proportional heuristic, the capacity constraint induces an

asymptotic path but the binomial tree itself is never truncated. This is what makes it more

flexible than the constant-quantity approach, which modifies the binomial tree outright and

generates reflections – see Figures 5 to 7.

From Figure 11 we see that, except for very small capacity k (in which case m = 1 is

optimal), relaxing the integer constraint and allowing X ∈ (k/5, k) (in purple) delivers a

modest improvement compared to X ∈ {k/m,m ∈ N}. For the majority of cases it finds a

new optimum that beats the other two heuristics – for example, 2 < m < 3 for k = 0.65.

We also remark that this more flexible heuristic approximately behaves like some kind of

combination of the constant bid and proportional bid approaches. This robustness check gives

us comfort in thinking that the heuristics we study operate “not far” from the strictly optimal

strategy.
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Figure 11: Comparison of linear (red) and constant (blue/purple) bids payoffs in the same graphs
for different k and a = 0.6.

23



Figure 12: Comparison of linear (red) and constant (blue/purple) bids payoffs in the same graphs
for different k and a = 0.2.

Figures 11 and 12 also suggest a thought experiment as follows. Suppose one could con-

struct a strategy that is a hybrid of our two heuristics. This new strategy may deliver a

maximum that dominates the maxima of the proportional (red) and constant (blue) heuris-

tics. But by continuity of the payoff function, this new maximum cannot be much higher than

the current maxima. This speaks to the good performance of our heuristics.

Capacity constraints. In the model we present, producers are unconstrained in their abil-

ity to supply; in consequence they always supply according to their best response and clearing

prices are standard “Cournot prices” with bounded markups that reflect the relative compet-
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itiveness of the market. In some markets, such as electricity, binding capacity constraints are

a major concern – for then aggregate supply may not meet demand – and they are reflected

in widely fluctuating prices. Large price differences invite arbitrage.

In an extension (available upon request) we study this problem when a fraction of producers

are also constrained by a finite capacity. As that fraction increases, the market power of

the unconstrained producers increases, and so do their payoffs. From the expressions for the

quantities A(rk), B(rk), A(k/m), and B(k/m), it is immediate that the payoffs to the storage

unit also increase. There is more capacity withholding; r decreases and m increases.

Demand specification. Both our demand specification and the structure of the demand

shocks are stark (and simple). Altering the slope of demand, rather than the intercept, has

predictable effects: a (uniformly) less elastic demand induces both larger mark ups and more

withholding, and conversely for a more elastic demand. Equivalently, the optimal fraction r

decreases and the optimal number of steps m increases. The impact on the continuation risk

is ambiguous: a lower r and higher m imply more flexibility, which decreases the continuation

risk. But a less elastic demand implies higher prices, including higher purchase prices, which

increase the cost of inaction at (or near) a boundary.

3.3 A richer Markovian structure

The payoff functions we can compute in Section 3.2 feature the continuation risk, that is,

a cost of uncertainty – see equations (7) and (8). This cost stems for the risk of facing a

sequence of shocks in the same direction, which eventually cripples storage. A glance at the

payoff functions (7) and (8) suggests that a sequence of perfectly negatively correlated shocks

−a, a,−a, a, ... would deliver the highest (and certain) payoff.

In this Section we relax the strict independence assumption and investigate the constant-

quantity heuristics when shocks follow a non-degenerate Markov chain, the persistence of

which can vary. The goal is to better understand the impact of uncertainty on the behavior

of the storage operator, and the salience of the continuation risk. To this end, we let storage

buy and sell in any of one step (m = 1), two steps (m = 2) or three steps (m = 3); richer

heuristics, with m > 3 are no less interesting but beyond what we can manage. With m = 2,

for example, there are four possible states that are payoff relevant: an empty unit, a half-full
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unit after the negative shock, a half-full unit after the positive shock, and finally a full storage

unit. There is no need to distinguish the nature of the shock at the boundaries because states

0 and k are accessible only after positive and negative shocks, respectively. Assume now that

shocks εt form a discrete-time Markov chain:

Pr{ε0 = a} = x, Pr{ε0 = −a} = 1− x,

Pr{εt+1 = a|εt = a} = x, Pr{εt+1 = −a|εt = a} = 1− x,

Pr{εt+1 = a|εt = −a} = 1− y, Pr{εt+1 = −a|εt = −a} = y
(14)

for any t ⩾ 0. We denote the transition matrix by Q and its determinant by d:

Q =

 x 1− x

1− y y

 , d = detQ = x+ y − 1,

and we let the functions A(k/m) and B(k/m) be defined as before.

Proposition 4. Under conditions laid out below, there exists a dynamic equilibrium, such

that

• the storage unit buys k/m under the negative shock until it reaches capacity k and sells

δk/m under the positive shock until it becomes empty;

• in each period, the producers set quantities q∗ according to static Cournot competition

and based on the current shock and the state of the storage (full or empty). Namely,

q∗ =
1− a

n+ 1
if storage is full and ε = −a,

q∗ =
1− a+ k/m

n+ 1
if storage is not full and ε = −a,

q∗ =
1 + a

n+ 1
if storage is empty and ε = a,

q∗ =
1 + a− δk/m

n+ 1
if storage is not empty and ε = a.
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1. m = 1; this equilibrium exists if

B <
β(1− y)

1− βy
A. (15)

and the expected payoff of the storage operator U1
s takes the following form:

U1
s =

1− x

(1− β)(1− βd)
(−B + β(1− y)A+ βyB) .

2. m = 2; this equilibrium exists if

B

(
k

2

)
<

β(1− y)(1 + β2d)

1− β2(1− x+ yd)
A

(
k

2

)
, (16)

and the expected payoff of the storage operator U2
s takes the following form:

U2
s =

1− x

(1− β)(1− βd)

(
−B

(
k

2

)
+ β(1− y)A

(
k

2

)
+ β2y

yB
(
k
2

)
+ βx(1− y)A

(
k
2

)
1− β2(1− x)(1− y)

)
.

3. m = 3; this equilibrium exists if

B

(
k

3

)
< β(1−y)

(1− β2(1− x)(1− y))
2
+ β2xy (1 + β2(xy − 2(1− x)(1− y)))

(1− β2(1− x)(1− y))2 − β3y3 − β4xy(1− x)(1− y)
A

(
k

3

)
,

(17)

and the expected payoff of the storage operator U3
s reads

U3
s =

1− x

(1− β)(1− βd)

[
−B

(
k

3

)
+ β(1− y)A

(
k

3

)

+ β3y
y2B

(
k
3

)
+ x(1− y) (1 + β2d)A

(
k
3

)
(1− β2(1− x)(1− y))2 − β4xy(1− x)(1− y)

]
.

When there is little persistence, the probability of being stuck at either boundary 0 or k is

small; that is, the storage operator is almost guaranteed to reverse direction – for example, to

sell after buying. Compared to Section 3.2.2, the “waves” of Figure 7 unfold faster. In turn,

this stokes the incentives to buy in the first place, and so on. These rapid cycles reduce the

uncertainty, but not the volatility ; in fact, certain volatility is best for the storage operator.

Low persistence effectively negates the continuation risk, as can be seen from the payoffs
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Um
s , m = 1, 2, 3, taking y and x as small. Indeed, the payoffs Um

s , m = 1, 2, 3 include

two terms: the first one is −B(k/m) + β(1 − y)A(k/m), which is, modulo a multiplier, the

discounted payoff from buying and selling every other period. This is a storage unit operating

under perfect foresight. The second term captures the cost of uncertainty, as best-responded

to by the storage operator. That cost is negligible if x and y are small.

In Figures 13 and 14 we plot the payoff functions of the storage operator projected on the

dimensions x and y, which denote persistence, and with x = y. The red stands for the payoff

function whenm = 1, the blue form = 2 and the green form = 3, all for the constant-quantity

heuristic. All other parameters remain as in the other plots. Low persistence is clearly better

in this environment, but we note that in some cases a very high persistence seems to improve

payoffs over a moderate persistence. With higher persistence there are fewer cycles, each of

which induces some losses; high persistence delays the onset of each these cycles.

When capacity is relatively small (compared to the shock), it is best to buy and sell

in full (m = 1) for almost any persistence. The reason is that the storage operator has

no (significant) market power, so there is no (significant) price impact. But when capacity

increases, we observe more mixed results. First, as persistence increases, flexibility becomes

valuable: buying and selling in two steps and three steps starts dominating. It is better able

to cope with the probability of shocks repeating themselves. Second, with a large(r) capacity,

restraint also pays off: buying and selling in two steps (blue) dominates one step (red) for

any persistence; and three steps (green) dominates both. It is best to not use the capacity in

full at any point in time because of the market power effect, and this is exactly what m = 3

delivers. These conclusions are replicated, but even starker, when shocks and capacity are

even smaller. Then, in some cases, the three-step strategy is the only one that can deliver any

positive surplus.

With this simple structure it is difficult to speak of the impact of high persistence in greater

detail. With a lot of persistence in shock (x → 1 or y → 1), the storage operator can spend a

lot of time at either boundary (0 or k); if that is the case, one can conjecture she would like to

buy or sell over many periods (so, m be large). We cannot handle this case, and aside from a

strict numerical treatment, there is no hope of doing so because even a computer cannot find

the eigenvalues of the matrices of interest.
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Figure 13: Payoffs under symmetric Markov shocks for divisible (green for k/3 and blue for k/2) and
indivisible (red) capacities in the same graphs for different k and a = 0.6.
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Figure 14: Payoffs under symmetric Markov shocks for divisible (green for k/3 and blue for k/2) and
indivisible (red) capacities in the same graphs for different k and a = 0.2.

3.4 Discussion

Our results reveal a strategic storage operator withholds quantities for two essential rea-

sons. One, they want to exercise their market power; second, they seek to actively manage the

continuation risk, for which they need flexibility in their trading decisions. Preserving that

flexibility implies withholding as well. Here we further discuss market power.
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3.4.1 Vertical integration

Storage is common in many manufacturing and retail activities, so vertical integration

between storage and generation is a natural line of inquiry. Andres-Cerezo and Fabra (2023b)

show storage and conventional electricity generation should not be integrated, for integration

facilitates coordination and so enhances market power. This happens to be true of any com-

modity. The corollary to Andres-Cerezo and Fabra (2023b) is that some qualified integration

of storage and production, for selected production technologies (e.g. solar electricity), may

facilitate the emergence and operation of merchant storage. This is particularly pertinent

in electricity markets. The reason is that storage is (typically) a complement for renewable

generation.16 This is not a consideration in Butters et al. (Working Paper), where storage is

competitive by assumption. The same logic applies to cyclical commodities such as crops or

to extractive industries subject to weather disruptions.

However it is easy to see that a vertically-integrated storage facility behaves like a standard

seller: it receives (possibly at random times) the commodity from a production facility at an

agreed transfer price that has no economic basis, and then sells according to market conditions.

It never has to contend with strategic buying, as the (stand-alone) merchant storage must.

3.4.2 Implications for competition policy and market design

While our model features a single storage operator, one can speculate that on both accounts

it is socially best for the storage units to remain small. It is tautological but nonetheless useful

to recall that it is easier to mitigate the exercise of market power if storage has no market

power. A small unit (compared to the magnitude of the shocks) uses its full capacity every time

it trades. The reason is that the arbitrage gains dominate the continuation risk. Whether

any of this is implementable in practice depends in part on the exact storage technology.

Economies of scale favor a large size, but most storage operations need space rather than

costly investment, which suggests constant returns to scale. In electricity, battery capacity as

supplied by Tesla or Siemens, increases linearly in the number of “packs”. This accords with

constant returns to scale.

In centralized markets like electricity, there may also be a role for a market operator to play

insuring the storage unit against the continuation risk – being stuck either full or empty. Recall

16See Andres-Cerezo and Fabra (2023a) for some qualifications.
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that the continuation risk contributes to quantity withholding: flexibility in trading requires

the capacity k to be divided in many steps m (equivalently, r to be small), hence the traded

quantity k/m (or rk) is small. All things otherwise equal, a welfare-maximizing operator

would like to see m decrease (r increase). To do so, the operator could tax transactions

and disburse these premia to encourage a full unit to sell at a low price (when the shock is

negative), or an empty one to buy at a high price (conversely). To be clear, the incentives

of the market operator are not to alter prices in a particular period or a particular state,

but to provide systematic insurance against the continuation risk. In response, the storage

operator can behave more aggressively every period. We note this counters the insurance

service implicit in the activities of the storage unit, and increases price volatility. However

this is not very different from a reinsurance contract.

Still in the context of centralized trading, we finally ask, but are yet unable to answer,

how should a bidding space be defined and a market be cleared when (at least some) sellers

use dynamic strategies. Indeed, if storage units are forward-looking, so should be the market

operator. This suggests that the myopic clearing of simple quantity offers may not be the

optimal mechanism for an operator seeking to minimize procurement costs.

3.4.3 Relation to financial markets.

Even though we use the term “arbitrage”, there is no financial market in this model. Hence

there cannot be any interaction between the spot market and market for financial derivatives;

in particular, there is no scope for “commodity financialization” (see for example, Goldstein

and Yang (2022)).17

However, electricity derivatives, especially futures contracts, do exist of course. It is there-

fore sensible to ask whether that phenomenon can also arise and what form it may take. In

electricity, many futures contracts are fixed-price forward contract; if S is the agreed spot

price, the value of the futures contract is F (t, T ) = Se−r(T−t). This leaves little room for

speculation. There also exist more flexible derivatives; in the case of a futures contract, its

value is F (t, T ) = Ste
−r(T−t), where St is the time-t spot price. This equality can hold true if

there exists a replication strategy that requires the instantaneous trading of actual electricity.

With storage that is possible.

17Commodity financialization is the phenomenon whereby idiosyncratic characteristics of the financial sector
are imported into the real sector.
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In the context of our model, two natural features may arise. First, trading is constrained by

the prohibition on short-selling (and implicitly, short-buying). Cvitanić and Karatzas (1993),

for example, show that standard martingale-equivalence techniques do not apply, but that

these restrictions can be overcome. More novel is the fact that the storage capacity k is finite

and bounds the state of c; this limits the ability to replicate to a fraction ϕ < 1 of c if selling,

and of k − c if buying. Therefore futures contracts must be in finite supply too. Moreover,

storage-for-trade and storage-for-replication must co-exist; the value of storage in both these

activities is jointly determined. Returns from arbitrage trade in the spot market increase the

cost of services for replication. Conversely, one can conjecture that financial traders may have

an impact on price formation both in the futures market and therefore in the spot market.

Indeed, a large demand for contracts implies a small fraction 1−ϕ of capacity remains available

for trading, which implies high storage mark-ups. So financial activity may have an impact

on spot prices of the commodity(ies) through a capacity channel – rather than through price

discovery as in Goldstein and Yang (2022).

4 Conclusion

In this paper we study a model of dynamic trading based on storage. This is an impor-

tant step to understand the economics of storage, which have long been understudied, and to

tackle the ambitious question of market design with storage. We limit ourselves to a Cournot

environment with stochastic shocks that follow a Markov chain, and allow for capacity con-

straints; there is no change in the mean demand. This environment features market power

and strategic behavior, in departure the rest of the literature on (other forms of) storage. This

work applies to any storable commodity, including now electricity.

Even then, the analysis of such a simple problem is very demanding. To make progress, we

must confine ourselves to studying simple but reasonable heuristics, which allows us to derive

explicit forms for the long-horizon payoffs of the storage unit. For high enough a discount

factor, we know these payoffs are close approximations. We uncover two competing forces that

a storage operator must balance: market power, which is quite standard, and the continuation

risk, which is completely new. The continuation risk embodies the need for flexibility in

trading that a large capacity can afford and the expected cost of buying too much energy
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and delaying sale that a large capacity induces. It is only relevant when storage has market

power and can be construed as a corollary of that market power. The full implications of these

behaviors on market design are yet to be understood.

There is still a tremendous amount of work to do to really understand the economics of

storage. In this model there is no change in the mean demand over time. This is a central

feature of most markets, and especially of electricity markets, but it is difficult to incorporate

in a model of dynamic trading. There is also no competition between storage operators,

and therefore no opportunity to collude either. With some simplifications, this model can

be adapted to allow for oligopolistic storage units. We tackle this problem in a separate

paper–see Balakin and Roger (2024).
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A Appendix – for online publication

A.1 Proofs

Proof of Proposition 1. Since under proportional bids, we never reach upper limit k and never

reach lower limit 0 again after starting there, the system of equations (6) takes the following

form: 

V (0) =
1

2− β

(
−1− a+ rk

n+ 1
· rk + βV (rk)

)
,

V (c) =
1

2

(
−1− a+ r(k − c)

n+ 1
· r(k − c) + βV (c+ r(k − c))

)
+
1

2

(
1 + a− δrc

n+ 1
· δrc+ βV ((1− r)c)

)
.

We need to find V (0) = UP
s . Let’s enumerate all c, b(c), and a(c) in order of their

appearance when we expand our equation for V (0). Namely, in the first period we have

V (0) =
1

2
βV (0) +

1

2

(
−1− a+ rk

n+ 1
· rk + βV (rk)

)
= −1

2
B(rk) +

β

2
(V (0) + V (rk)) ,

so we define c0 = 0, b0 = r(k − c0) = rk, c1 = c0 + b0 = rk. In the second round, we get

V (0) = −1

2
B(rk) +

β

2

(
1

2
βV (0) +

1

2
(−B(rk) + βV (rk))

+
1

2
(−B(r(k − rk)) + βV (rk + r(k − rk))) +

1

2
(A(r · rk) + βV ((1− r)rk))

)
= −1

2
B(rk) +

β

4

(
−B(rk)−B(r(1− r)k) + A(r2k)

)
+

β2

4

(
V (0) + V (rk) + V (r(2− r)k) + V (r(1− r)k)

)
.

Thus,

b1 = r(k − c1) = r(1− r)k, a1 = rc1 = r2k,

c2 = c1 + b1 = r(2− r)k, c3 = c1 − a1 = r(1− r)k.
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In the third round, we get

V (0) = −1

2
B(b0) +

β

4

(
−B(b0)−B(b1) + A(a1)

)
+

β2

8

(
−B(b0)−B(b1)−B(b2)−B(b3) + A(a1) + A(a2) + A(a3)

)
+

β3

8

7∑
i=0

V (ci),

where

b2 = r(k − c2) = r(1− 2r − r2)k, b3 = r(k − c3) = r(1− r + r2)k,

a2 = rc2 = r2(2− r)k, a3 = rc3 = r2(1− r)k,

c4 = c2 + b2 = r(3− 3r − r2)k, c5 = c3 + b3 = r(2− 2r + r2)k,

c6 = c2 − a2 = r(1− r)(2− r)k, c7 = c3 − a3 = r(1− r)2k.

Finally, in round t,

V (0) = −1

2
B(b0) +

β

4

(
−B(b0)−B(b1) + A(a1)

)
+

β2

8

(
−

3∑
i=0

B(bi) +
3∑

i=1

A(ai)

)
+ · · ·

+
βt−1

2t

(
−

2t−1−1∑
i=0

B(bi) +
2t−1−1∑
i=1

A(ai)

)
+

βt

2t

2t−1∑
i=0

V (ci),

where bi, ai, and ci can be found recursively. Continuing this process infinitely and noticing

that

βt

2t

2t−1∑
i=0

V (ci) ⩽ βtV (max
i

ci) −−−→
t→∞

0,

we obtain:

V (0) −−−→
t→∞

−1

2
B(b0) +

1

2

∞∑
j=1

(
β

2

)j
−

2j−1∑
i=0

B(bi) +
2j−1∑
i=1

A(ai)

 . (18)

Let

G(t) =
2t−1∑
i=0

ci, H(t) =
2t−1∑
i=0

(
ci
)2

.
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We can get a recursive equation for G(t):

G(t) =
2t−1−1∑
i=0

(ci + bi) +
2t−1−1∑
i=1

(ci − ai)

=
2t−1−1∑
i=0

(ci + r(k − ci)) +
2t−1−1∑
i=0

(ci − rci) = rk2t−1 + 2(1− r)G(t− 1),

which implies

G(t) = rk2t−1 + 2(1− r)
(
rk2t−2 + 2(1− r)G(t− 2)

)
= . . .

= rk

t−1∑
i=0

2i(1− r)i2t−1−i + 2t(1− r)tG(0) = k2t−1
(
1− (1− r)t

)
.

(19)

The same technique works for H(t):

H(t) =
2t−1−1∑
i=0

(ci + bi)2 +
2t−1−1∑
i=1

(ci − ai)2 =
2t−1−1∑
i=0

(rk + (1− r)ci)2 +
2t−1−1∑
i=0

((1− r)ci)2

= r2k22t−1 + 2r(1− r)kG(t− 1) + (1− r)2H(t− 1) + (1− r)2H(t− 1)

= rk22t−1
(
1− (1− r)t

)
+ 2(1− r)2H(t− 1),

and

H(t) = rk22t−1
(
1− (1− r)t

)
+ 2(1− r)2

(
rk22t−2

(
1− (1− r)t−1

)
+ 2(1− r)2H(t− 2)

)
= . . . = rk2

t−1∑
i=0

2i(1− r)2i2t−i−1
(
1− (1− r)t−i

)
+ 2t(1− r)2tH(0)

= k22t−1 (1− (1− r)t) (1− (1− r)t+1)

2− r
.

(20)

From (19), we can find expressions for sums of bi and ai:

2t−1∑
i=0

bi =
2t−1∑
i=0

r(k − ci) = rk2t − rG(t) = rk2t−1
(
1 + (1− r)t

)
,

2t−1∑
i=0

ai =
2t−1∑
i=0

rci = rG(t) = rk2t−1
(
1− (1− r)t

)
.
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From (19) and (20), we can find expressions for sums of squares of bi and ai:

2t−1∑
i=0

(
bi
)2

=
2t−1∑
i=0

r2(k − ci)2

= r2k22t − 2r2kG(t) + r2H(t) = r2k22t−1

(
1 + (1− r)2t+1

2− r
+ (1− r)t

)
,

2t−1∑
i=0

(
ai
)2

=
2t−1∑
i=0

r2
(
ci
)2

= r2H(t) = r2k22t−1

(
1 + (1− r)2t+1

2− r
− (1− r)t

)
.

Now we are ready to calculate sums of B(b(i)) and A(a(i)) and get the final formula for

V (0). From (18), we have

V (0) = −1

2
B(rk) +

1

2

∞∑
j=1

(
β

2

)j
−

2j−1∑
i=0

1− a+ bi

n+ 1
bi +

2j−1∑
i=1

1 + a− δai

n+ 1
δai


= −1

2

1− a+ rk

n+ 1
rk +

1

2(n+ 1)

∞∑
j=1

(
β

2

)j
(
−(1− a)rk2j−1

(
1 + (1− r)j

)
− r2k22j−1

(
1 + (1− r)2j+1

2− r
+ (1− r)j

)
+ (1 + a)δrk2j−1

(
1− (1− r)j

)
− δ2r2k22j−1

(
1 + (1− r)2j+1

2− r
− (1− r)j

))

=
rk

4(n+ 1)(1− β)(1− (1− r)β)

(
rβ ((1 + a)δ − (1− a))− 2(1− β)(1− a+ rk)

− rk
βr2(1 + δ2)

1− (1− r)2β

)
.

The last expression is exactly formula (7).

Proof of Proposition 2. The system of equations (6) takes the following form:



Vt

(
ik

m

)
=

1

2

(
A

(
k

m

)
+ βVt+1

(
(i− 1)k

m

)
−B

(
k

m

)
+ βVt+1

(
(i+ 1)k

m

))
,

Vt(0) =
1

2

(
βVt+1(0)−B

(
k

m

)
+ βVt+1

(
k

m

))
,

Vt(k) =
1

2

(
A

(
k

m

)
+ βVt+1

(
(m− 1)k

m

)
+ βVt+1(k)

) (21)

for all 1 ⩽ i ⩽ m− 1. We are interested in coefficients cit in front of value functions Vt(ik/m)
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for each particular t ⩾ 0 and 0 ⩽ i ⩽ m, such that

V0(0) = Ft−1

(
β,A

(
k

m

)
, B

(
k

m

))
+

(
β

2

)t m∑
i=0

citVt

(
ik

m

)
. (22)

Note that
∑

i c
i
t = 2t for any t.

In each period t, the storage unit buys energy with probability 1/2. This cannot be done

only if the unit has reached its full capacity. Also, in period t the storage unit sells energy

with probability 1/2 if it’s not empty. Thus, the overall expected earnings of storage up to

period t can be described by the following expression:

Ft =
t∑

i=0

(
β

2

)i

· 1
2
·
(
(2i − c0i )A

(
k

m

)
− (2i − cmi )B

(
k

m

))
.

Indeed, c0t/2
t and cmt /2

t are the probabilities of the storage to be correspondingly empty or

full at t, according to (22).

Since
∑

i c
i
t = 2t, β < 1, and Vt is a nondecreasing function, the last term in (22) goes to

zero if t → ∞:

(
β

2

)t m∑
i=0

citVt

(
ik

m

)
⩽

(
β

2

)t m∑
i=0

citVt(k) = βtVt(k) −−−→
t→∞

0.

Then the expected payoff function takes the following form:

UC
s = V0(0) =

∞∑
i=0

(
β

2

)i

· 1
2
·
(
(2i − c0i )A

(
k

m

)
− (2i − cmi )B

(
k

m

))
. (23)

We need to find c0i and cmi . From (21), we can see that

c0t+1 = c0t + c1t , cit+1 = ci−1
t + ci+1

t (1 ⩽ i ⩽ m− 1), cmt+1 = cm−1
t + cmt .

Thus, we have a modified version of Pascal’s triangle. Let’s see if we can express cit in terms

of binomial coefficients Ck
n = n!/(k!(n− k)!). The two main properties of Ck

n we are going to

use are

Ck
n = Cn−k

n , Ck
n + Ck+1

n = Ck+1
n+1.
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We start with c00 = 1 = C0
0 (and all other ci0 = 0, i ⩾ 1). In period 1, we have c11 =

c01 = 1 = C0
1 with all other ci1 equal to zero. Period 2 delivers c22 = c12 = 1 = C0

2 and

c02 = c11 + c10 = C0
1 + C0

1 = C1
1 + C0

1 = C1
2 , with all remaining ci1 equal to zero. In period 3,

we have c33 = c23 = 1 = C0
3 , c

1
3 = c22 + c02 = C0

2 + C1
2 = C1

3 , and c03 = c12 + c02 = C0
2 + C1

2 = C1
3 ,

with all other ci1 equal to zero. We get rid of all the zeroes by period m with cim = C
⌊(m−i)/2⌋
m

(here, ⌊x⌋ is the largest integer which is less than or equal to x). This process is summarized

in Table 1.

st
a
te

i

m 0 0 . . . . . . 0 0 C0
m

m
−
1

0 0 . . . . . . 0 C0
m−1 C0

m

m
−
2

0 0 . . . . . . C0
m−2 C0

m−1 C1
m

...
...

...
...

2 0 0 C0
2 C0

3 C1
4 . . . C

⌊(m−4)/2⌋
m−2 C

⌊(m−3)/2⌋
m−1 C

⌊(m−2)/2⌋
m

1 0 C0
1 C0

2 C1
3 C1

4 . . . C
⌊(m−3)/2⌋
m−2 C

⌊(m−2)/2⌋
m−1 C

⌊(m−1)/2⌋
m

0 C0
0 C0

1 C1
2 C1

3 C2
4 . . . C

⌊(m−2)/2⌋
m−2 C

⌊(m−1)/2⌋
m−1 C

⌊m/2⌋
m

0 1 2 3 4 . . . m−2 m−1 m

cit time t

Table 1: The first m+1 steps of evolving cit

However, after period m we cannot go up anymore. Instead, all the extra mass we accu-

mulate goes down step by step. Namely, in period m+1 we still have cim+1 = C
⌊(m+1−i)/2⌋
m+1 for

all 0 ⩽ i ⩽ m− 1, but for i = m we now have cmm+1 = C0
m+1 +C0

m+1. In period m+ 2, we still

have cim+2 = C
⌊(m+2−i)/2⌋
m+2 , but only for 0 ⩽ i ⩽ m − 2. For i = m and i = m − 1, we have

cmm+2 = cm−1
m+2 = C1

m+2 + C0
m+2, etc. Finally, in period 2m+ 1, we have

ci2m+1 = C
⌊ 2m+1−i

2
⌋

2m+1 + C
⌊ i
2
⌋

2m+1 0 ⩽ i ⩽ m.

See Table 2 for the entire picture.
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m C0
m C0

m+1+C0
m+1 C1

m+2+C0
m+2 . . . C

⌊m−1
2

⌋
2m−1 +C

⌊m−2
2

⌋
2m−1 C

⌊m
2
⌋

2m +C
⌊m−1

2
⌋

2m C
⌊m+1

2
⌋

2m+1 +C
⌊m

2
⌋

2m+1
m

−
1

C0
m C1

m C1
m+2+C0

m+2 . . . C
⌊m

2
⌋

2m−1+C
⌊m−3

2
⌋

2m−1 C
⌊m+1

2
⌋

2m +C
⌊m−2

2
⌋

2m C
⌊m+2

2
⌋

2m+1 +C
⌊m−1

2
⌋

2m+1

m
−
2

C1
m C1

m+1 C2
m+2 . . . C

⌊m+1
2

⌋
2m−1 +C

⌊m−4
2

⌋
2m−1 C

⌊m+2
2

⌋
2m +C

⌊m−3
2

⌋
2m C

⌊m+3
2

⌋
2m+1 +C

⌊m−2
2

⌋
2m+1

...
...

...
...

2 C
⌊m−2

2
⌋

m C
⌊m−1

2
⌋

m+1 C
⌊m

2
⌋

m+2 . . . Cm−2
2m−1+C0

2m−1 Cm−1
2m +C0

2m Cm−1
2m+1+C1

2m+1

1 C
⌊m−1

2
⌋

m C
⌊m

2
⌋

m+1 C
⌊m+1

2
⌋

m+2 . . . Cm−1
2m−1 Cm−1

2m +C0
2m Cm

2m+1+C0
2m+1

0 C
⌊m

2
⌋

m C
⌊m+1

2
⌋

m+1 C
⌊m+2

2
⌋

m+2 . . . Cm−1
2m−1 Cm

2m Cm
2m+1+C0

2m+1

i

/t m m+1 m+2 . . . 2m−1 2m 2m+1

Table 2: The second m+1 steps of evolving cit

Now the excess mass reached the lower boundary again. Since we cannot go down anymore,

this mass has to spread up again and add one more binomial coefficient as a summand to all

cit starting from t = 2m + 2 and until t = 3m + 2. This process continues infinitely. We can
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now derive c0i and cmi :

c0i =



C
⌊ i
2
⌋

i if 0 ⩽ i ⩽ 2m,

C
⌊ i
2
⌋

i + C
⌊ i−2m−1

2
⌋

i if i = 2m+ 1,

C
⌊ i
2
⌋

i + C
⌊ i−2m−1

2
⌋

i + C
⌊ i−2m−2

2
⌋

i if 2m+ 2 ⩽ i ⩽ 2m+ 2 + 2m,

C
⌊ i
2
⌋

i + C
⌊ i−2m−1

2
⌋

i + C
⌊ i−2m−2

2
⌋

i + C
⌊ i−2m−1−2(m+1)

2
⌋

i if i = 2(m+ 1) + 2m+ 1,

C
⌊ i
2
⌋

i + C
⌊ i−2m−1

2
⌋

i + C
⌊ i−2m−2

2
⌋

i + C
⌊ i−2m−1−2(m+1)

2
⌋

i + C
⌊ i−4(m+1)−2m

2
⌋

i

if 4(m+ 1) ⩽ i ⩽ 4(m+ 1) + 2m,

· · ·

cmi =



0 if 0 ⩽ i ⩽ m− 1,

C
⌊ i−m

2
⌋

i if i = m,

C
⌊ i−m

2
⌋

i + C
⌊ i−m−1

2
⌋

i if m+ 1 ⩽ i ⩽ m+ 1 + 2m,

C
⌊ i−m

2
⌋

i + C
⌊ i−m−1

2
⌋

i + C
⌊ i−m−1−2m−1

2
⌋

i if i = m+ 1 + 2m+ 1,

C
⌊ i−m

2
⌋

i + C
⌊ i−m−1

2
⌋

i + C
⌊ i−m−1−2m−1

2
⌋

i + C
⌊ i−3(m+1)

2
⌋

i if 3(m+ 1) ⩽ i ⩽ 3(m+ 1) + 2m,

· · ·

The coefficient in front of A(k/m) in (23) takes the following form:

1

2
·

∞∑
i=0

(
β

2

)i (
2i − c0i

)
=

1

2
·

∞∑
i=0

βi −
∞∑
i=0

βi

2i+1
C

⌊ i
2
⌋

i −
∞∑

i=2m+1

βi

2i+1
C

⌊ i−2m−1
2

⌋
i −

−
∞∑

i=2m+2

βi

2i+1
C

⌊ i−2m−2
2

⌋
i −

∞∑
i=4m+3

βi

2i+1
C

⌊ i−4m−3
2

⌋
i − . . . =

1

2(1− β)
−

∞∑
i=0

βi

2i+1
C

⌊ i
2
⌋

i −

−
∞∑
j=0

 ∞∑
i=2m+1+2j(m+1)

βi

2i+1
C

⌊ i−2m−1−2j(m+1)
2

⌋
i +

∞∑
i=2m+2+2j(m+1)

βi

2i+1
C

⌊ i−2m−2−2j(m+1)
2

⌋
i

 .

We can rewrite the second term:

∞∑
i=0

βi

2i+1
C

⌊ i
2
⌋

i =
∞∑
i=0

β2i

22i+1
Ci

2i +
∞∑
i=0

β2i+1

22i+2
Ci

2i+1 =
1

2
·

∞∑
i=0

(
β

2

)2i(
Ci

2i +
β

2
Ci

2i+1

)
.
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The term in parenthesis can also be simplified by considering even and odd indices separately:

∞∑
i=2m+1+2j(m+1)

βi

2i+1
C

⌊ i−2m−1−2j(m+1)
2

⌋
i +

∞∑
i=2m+2+2j(m+1)

βi

2i+1
C

⌊ i−2m−2−2j(m+1)
2

⌋
i =

=
β2(j+1)(m+1)−1

22(j+1)(m+1)
+

∞∑
i=2(j+1)(m+1)

βi

2i+1

(
C

⌊ i+1−2(j+1)(m+1)
2

⌋
i + C

⌊ i−2(j+1)(m+1)
2

⌋
i

)
=

=
β2(j+1)(m+1)−1

22(j+1)(m+1)
+

∞∑
i=0

β2(j+1)(m+1)+2i

22(j+1)(m+1)+2i
Ci

2(j+1)(m+1)+2i+

+
∞∑
i=0

β2(j+1)(m+1)+2i+1

22(j+1)(m+1)+2i+2
Ci+1

2(j+1)(m+1)+2i+2 =
1 + β

β

∞∑
i=0

(
β

2

)2(j+1)(m+1)+2i

Ci
2(j+1)(m+1)+2i.

The coefficient in front of B(k/m) in (23) takes the following form:

−1

2
·

∞∑
i=0

(
β

2

)i (
2i − cmi

)
= −1

2
·

∞∑
i=0

βi +
∞∑

i=m

βi

2i+1
C

⌊ i−m
2

⌋
i +

∞∑
i=m+1

βi

2i+1
C

⌊ i−m−1
2

⌋
i

+
∞∑

i=3m+2

βi

2i+1
C

⌊ i−3m−2
2

⌋
i +

∞∑
i=3m+3

βi

2i+1
C

⌊ i−3m−3
2

⌋
i + . . .

= − 1

2(1− β)
+

∞∑
j=0

 ∞∑
i=m+2j(m+1)

βi

2i+1
C

⌊ i−m−2j(m+1)
2

⌋
i

+
∞∑

i=m+1+2j(m+1)

βi

2i+1
C

⌊ i−m−2j(m+1)−1
2

⌋
i

 .

The term in parenthesis can be simplified the same way as for A(k/m):

∞∑
i=m+2j(m+1)

βi

2i+1
C

⌊ i−m−2j(m+1)
2

⌋
i +

∞∑
i=m+1+2j(m+1)

βi

2i+1
C

⌊ i−m−2j(m+1)−1
2

⌋
i =

=
1 + β

β

∞∑
i=0

(
β

2

)(2j+1)(m+1)+2i

Ci
(2j+1)(m+1)+2i.

Summing everything up, we obtain the overall expected profit of the storage unit from
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(23):

UC
s =

A(k/m)−B(k/m)

2(1− β)
+

1 + β

β

(
B

(
k

m

) ∞∑
j=0

(
β

2

)(m+1)(2j+1) ∞∑
i=0

(
β

2

)2i

Ci
2i+(m+1)(2j+1)−

−A

(
k

m

) ∞∑
j=1

(
β

2

)2(m+1)j ∞∑
i=0

(
β

2

)2i

Ci
2i+2(m+1)j

)
− A(k/m)

2

∞∑
i=0

(
β

2

)2i(
Ci

2i +
β

2
Ci

2i+1

)
.

Using formula
∞∑
i=0

βiCi
2i+r =

2r√
1− 4β

(
1 +

√
1− 4β

)r
from Graham et al. (1994) (p. 203) and introducing new discounting coefficient

β̃ =
β

1 +
√
1− β2

,

we finally get

UC
s =

1

2(1− β)

(
−B

(
k

m

)
+ β̃A

(
k

m

)
−

− 2
√

1− β2

β

β̃
m+1

1− β̃
2(m+1)

(
−B

(
k

m

)
+ β̃

m+1
A

(
k

m

)))
. (24)

Proof of Proposition 3. Let’s prove formula 10 first. In this case of four possible states, the

system of equations (6) takes the following form:

Vt(0) =
1

2
(βVt+1(0)−B(X) + βVt+1(X)) ,

Vt(X) =
1

2
(A(X) + βVt+1(0)−B(k −X) + βVt+1(k)) ,

Vt(k −X) =
1

2
(A(k −X) + βVt+1(0)−B(X) + βVt+1(k)) ,

Vt(k) =
1

2
(A(X) + βVt+1(k −X) + βVt+1(k)) .

(25)

It can be rewritten in a matrix form

Vt = P + β ·Q · Vt+1, (26)
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where

Vt =


Vt(0)

Vt(X)

Vt(k −X)

Vt(k)

 , P =


−B(X)/2

A(X)/2−B(k −X)/2

A(k −X)/2−B(X)/2

A(X)/2

 , Q =


1/2 1/2 0 0

1/2 0 0 1/2

1/2 0 0 1/2

0 0 1/2 1/2

 .

To calculate power t of matrix Q, we find the Jordan decomposition Q = T · J · T−1 of Q.

Here,

J =


1 0 0 0

0 −1/2 0 0

0 0 1/2 0

0 0 0 0

 , T =


1 1 −1 −1

1 −2 0 1

1 −2 0 −1

1 1 1 1

 ,

so Qt = T · J t · T−1.

For β < 1, we can find from (26) that

V0 =
t∑

i=0

βiQi · P + βt+1Qt+1 · Vt+1 −−−→
t→∞

∞∑
i=0

βiQi · P =

= P + T ·


β

1−β
0 0 0

0 − β
2+β

0 0

0 0 β
2−β

0

0 0 0 0

 · T−1 · P,

from where we finally get UX
s = V0(0):

UX
s = −1

2

(
B(X) +

β

2− β
B(k −X)

)
+

+
β

4(1− β)

(
A(X)−B(X) +

β2

4− β2
(A(k −X)−B(k −X))

)
,

which is exactly (10).

Formulae (11) – (13) can be proven exactly the same way using expression (26). For case
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m = 2 (1/3 < X < 1/2), we have

V =



Vt(0)

Vt(X)

Vt(2X)

Vt(k − 2X)

Vt(k −X)

Vt(k)


, P =



−B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(k−2X)
2

A(k−2X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2


, Q =



1/2 1/2 0 0 0 0

1/2 0 1/2 0 0 0

0 1/2 0 0 0 1/2

1/2 0 0 0 1/2 0

0 0 0 1/2 0 1/2

0 0 0 0 1/2 1/2


.

Case m = 3 (1/4 < X < 1/3) gives us

V =



Vt(0)

Vt(X)

Vt(2X)

Vt(3X)

Vt(k − 3X)

Vt(k − 2X)

Vt(k −X)

Vt(k)



, P =



−B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(k−3X)
2

A(k−3X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2



, Q =



1
2

1
2

0 0 0 0 0 0

1
2

0 1
2

0 0 0 0 0

0 1
2

0 1
2

0 0 0 0

0 0 1
2

0 0 0 0 1
2

1
2

0 0 0 0 1
2

0 0

0 0 0 0 1
2

0 1
2

0

0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 1
2

1
2



.

Finally, in case m = 4 (1/5 < X < 1/4), we have

V =



Vt(0)

Vt(X)

Vt(2X)

Vt(3X)

Vt(4X)

Vt(k − 4X)

Vt(k − 3X)

Vt(k − 2X)

Vt(k −X)

Vt(k)



, P =



−B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(k−4X)
2

A(k−4X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2



, Q =



1
2

1
2

0 0 0 0 0 0 0 0

1
2

0 1
2

0 0 0 0 0 0 0

0 1
2

0 1
2

0 0 0 0 0 0

0 0 1
2

0 1
2

0 0 0 0 0

0 0 0 1
2

0 0 0 0 0 1
2

1
2

0 0 0 0 0 1
2

0 0 0

0 0 0 0 0 1
2

0 1
2

0 0

0 0 0 0 0 0 1
2

0 1
2

0

0 0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 0 0 1
2

1
2



.
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For smaller X (m ⩾ 5), we observe polynomials of higher degrees when calculating eigenvalues

of matrix Q, and matrix decomposition turns out to be problematic. Nevertheless, the problem

may be solved computationally for any given m.

Proof of Proposition 4. To justify inequalities (15), (16), and (17), we need to find the ex-

pected payoffs of the storage unit. Let the value function V
{−,+}
t (i), i ∈ {0, k/2, k} be the

total expected payoff of the storage operator from t on if the current state is empty (i = 0),

half-full (i = k/2), or full (i = k) and the current shock is either negative (−) or positive (+).

We have a system of recursive equations:



V −
t (k) = y · βV −

t+1(k) + (1− y) ·
(
A

(
k

2

)
+ βV +

t+1

(
k

2

))
,

V −
t

(
k
2

)
= y ·

(
−B

(
k

2

)
+ βV −

t+1(k)

)
+ (1− y) ·

(
A

(
k

2

)
+ βV +

t+1(0)

)
,

V +
t

(
k
2

)
= (1− x) ·

(
−B

(
k

2

)
+ βV −

t+1(k)

)
+ x ·

(
A

(
k

2

)
+ βV +

t+1(0)

)
,

V +
t (0) = (1− x) ·

(
−B + βV −

t+1

(
k

2

))
+ x · βV +

t+1(0).

for any integer t ⩾ 0. It can be rewritten in a matrix form

Vt = P2 + β ·Q2 · Vt+1, (27)

where

Vt =


V −
t (k)

V −
t (k/2)

V +
t (k/2)

V +
t (0)

 , P2 =


(1− y)A(k/2)

(1− y)A(k/2)− yB(k/2)

xA(k/2)− (1− x)B(k/2)

−(1− x)B(k/2)

 , Q2 =


y 0 1− y 0

y 0 0 1− y

1− x 0 0 x

0 1− x 0 x

 .

To calculate power t of matrix Q2, we find the Jordan decomposition Q2 = T · J · T−1 of
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Q2. Here,

J =


1 0 0 0

0
√

(1− x)(1− y) 0 0

0 0 −
√

(1− x)(1− y) 0

0 0 0 x+ y − 1

 ,

T =



1 −x
√
1−y

y
√
1−x

x
√
1−y

y
√
1−x

− 1−y
1−x

1

√
(1−x)(1−y)−x

1−x
−
√

(1−x)(1−y)+x

1−x
− 1−y

1−x

1 x√
(1−x)(1−y)

− x
y

− x√
(1−x)(1−y)

− x
y

1

1 1 1 1


,

so Qt
2 = T · J t · T−1.

For β < 1, we can find from (27) that

V0 =
t∑

i=0

βiQi
2 · P2 + βt+1Qt+1

2 · Vt+1 −−−→
t→∞

∞∑
i=0

βiQi
2 · P2 =

= T ·



1
1−β

0 0 0

0 1

1−β
√

(1−x)(1−y)
0 0

0 0 1

1+β
√

(1−x)(1−y)
0

0 0 0 1
1+β(1−x−y)


· T−1 · P2 =

=
1

(1− β)(1− βd) (1− β2(1− x)(1− y))
×

×



(1− y)

(
−β(1− x)(1 + β2d)B

(
k

2

)
+
(
1− (1− y + xd)β2

)
A

(
k

2

))
−
(
(1− βy)(y − βd) + β3(1− x)(1− y)d

)
B

(
k

2

)
+ (1− y)(1− βx)(1 + β2d)A

(
k

2

)
−(1− x)(1− βy)(1 + β2d)B

(
k

2

)
+
(
(1− βx)(x− βd) + β3(1− x)(1− y)d

)
A

(
k

2

)
(1− x)

(
−
(
1− (1− x+ yd)β2

)
B

(
k

2

)
+ β(1− y)(1 + β2d)A

(
k

2

))


.

from where we finally get U2
s = V +

0 (0):

U2
s =

1− x

(1− β)(1− βd)

(
−B

(
k

2

)
+ β(1− y)A

(
k

2

)
+ β2y

yB
(
k
2

)
+ βx(1− y)A

(
k
2

)
1− β2(1− x)(1− y)

)
.
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Storage operates in this market only if U2
s > 0, which is exactly inequality (16).

For Condition (17), equation (27) reads

Vt = P3 + β ·Q3 · Vt+1,

where

Vt =



V −
t (k)

V −
t (2k/3)

V +
t (2k/3)

V −
t (k/3)

V +
t (k/3)

V +
t (0)


, P3 =



(1− y)A(k/2)

(1− y)A(k/2)− yB(k/2)

(1− y)A(k/2)− yB(k/2)

xA(k/2)− (1− x)B(k/2)

xA(k/2)− (1− x)B(k/2)

−(1− x)B(k/2)


,

Q3 =



y 0 0 1− y 0 0

y 0 0 0 1− y 0

0 y 0 0 0 1− y

1− x 0 0 0 x 0

0 1− x 0 0 0 x

0 0 1− x 0 0 x


.

The six eigenvalues of matrix Q3 that compose the diagonal of the corresponding Jordan

matrix J are

λ1 = 1, λ2 = x+ y − 1, λ3,4,5,6 = ±
√
(1− x)(1− y)±

√
xy(1− x)(1− y).

Following the same argumentation as in case of k/2, we get

V +
0 (0) =

1− x

(1− β)(1− βd)

[
−B

(
k

3

)
+ β(1− y)A

(
k

3

)

+β3y
y2B

(
k
3

)
+ x(1− y) (1 + β2d)A

(
k
3

)
(1− β2(1− x)(1− y))2 − β4xy(1− x)(1− y)

]
.

Inequality V +
0 (0) = U3

s > 0 is exactly (17).

Four possible deviations of the storage unit should be considered. All other deviations are
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just compositions of those four.

• A storage unit that is not empty deviates by not selling under the positive shock. Then

there may be only loss comparing to the default strategy. Indeed, nothing changes on

the market except the future profits to be discounted by β.

• A storage unit that is not full deviates by not buying under the negative shock. Also,

no gains here.

• A full storage unit deviates by selling under the negative shock. In this situation, the

quantities supplied by the producers are q = (1 − a)/(n + 1). The resulting price after

the deviation are

p = 1− a− δ
k

m
− n

1− a

n+ 1
=

1− a

n+ 1
− δ

k

m
.

To make this deviation profitable, the storage operator must gain more than if it waits

for the positive shock and sells in that period, but this contradicts (16) or (17).

• The nonfull storage unit deviates by buying under the positive shock. Here we have

q = (1+a)/(n+1), and the resulting price after the deviation is p = (1+a)/(n+1)+k/m.

It is easy to verify that the corresponding payoff is strictly negative.

Next we must rule out possible deviations of the producers. In each round, we have a static

Cournot equilibrium for all the participants. Any change of the equilibrium quantity in round

t leads to decreasing the payoffs in that round and, thus, decreasing the overall payoffs.

A.2 Price variations in an actual market–the National Electricity

Market, Australia

In this section we show histograms of prices that show that volatility exists and can be

large but is not guaranteed. This supports our approach that makes randomness a central

element, allows for persistence and validates the notion of continuation risk that is shown in

Figure 2.

Figure 15 shows prices on February 1st in the state of South Australia. It was a reasonably

good day for a storage operator who can take advantage of price movements over the course
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of the day, including extremely high prices. That day price spikes reached over AU$17,000,

just after some periods of negative prices that are ideal to charge.

Figure 15: Price sequence 1 February 2025, South Australia. AEMO data.

Figure 16 shows prices on February 3rd in the same state. In spite of a very large price

spike late in the day, it was not a good day for a storage operator: there are insufficient

variations over the course of day to charge. Of course, one can expect high prices later, but

as shown on Figure 2, these extremely high prices are never guaranteed.

Figure 16: Price sequence 1 February 2025, South Australia. AEMO data.

A.3 Optimal Bid Values

For each bunch of parameter values, we can find the optimal proportion ropt and, hence,

the optimal initial bid roptk for the case of proportional bids. Also, we can find the optimal
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constant bid X. We stay with the parameter values used in our examples in the main text

with n = 2, β = δ = 0.95. Table 3 presents the results.

Proportional bids, a = 0.6 Proportional bids, a = 0.2

k 0.25 0.45 0.65 0.85 1.05 0.1 0.15 0.2 0.25 0.3

ropt 0.91 0.68 0.543 0.451 0.385 0.795 0.635 0.526 0.447 0.385

roptk 0.228 0.306 0.353 0.384 0.404 0.08 0.095 0.105 0.112 0.115

Constant bids, a = 0.6 Constant bids, a = 0.2

k 0.25 0.45 0.65 0.85 1.05 0.1 0.15 0.2 0.25 0.3

X 0.21 0.259 0.253 0.248 0.299 0.068 0.066 0.074 0.069 –

Table 3

Some intuitive conclusions we can derive from this table:

• Bids decrease along with the shock in both cases;

• The first proportional bids are always higher than constant bids. This owes to more

flexibility towards the boundaries – the asymptotic behavior of the linear heuristic.

• The initial proportional bids tend to increase with k, but slowly. It is not the case for

constant bids because the continuation risk is more salient under this heuristic, and so

kicks in sooner. Indeed, constant bids increase as long as a number of steps (parameter

m from chapter 3.2.4) is the same and decrease with the next shift.
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