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Abstract

Storing electricity is completely essential to the energy transition. It also deeply dis-
rupts the manner in which electricity markets operate, for it introduces delay. In this
paper, we consider a dynamic model of an oligopolistic market with demand shocks, in
which a storage unit buys and sells energy subject to a capacity constraint. To make
progress in this stochastic game with constraints, we restrict attention to simple heuris-
tics, and we can characterise the optimal policy of a storage unit in this restricted class of
heuristics. The heuristics, the exogenous stochastic process and the capacity constraint
interact to induce rich dynamics. The optimal policy is sensitive to the nature of demand
shocks and to storage capacity. For a fixed capacity, the storage unit internalises its uni-
lateral market power; it acts like a monopolist on its arbitrage spread. The optimal
capacity is also interior because of uncertainty: it is costly to be stuck full or empty, and
that cost becomes overwhelming as capacity increases. We construct an equilibrium, in
which electricity arbitrage is never profitable, and so conclude that successful entry is
not a foregone conclusion.

This work informs market participants as well as the design of electricity markets
with storage. It is particularly relevant to major markets with rapid penetration of
renewable energy sources, like California or Australia. It can also be applied to trading
securities.
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1 Introduction

Producing electricity on a large scale and securely so as to transition away from polluting

fossil fuels requires vast amounts of storage. That storage delivers the intertemporal smoothing

of consumption and production that is completely essential to effecting the energy transition.

In the State of South Australia, for example, there is no object in installing more renewable

generation capacity as the State can power itself completely from renewable energy when it is

available.1 However there is a pressing need for storage. As of June 2023, California features

5 GW of storage capacity; to reach the legally-mandated 90% zero-emission energy target by

2030, it needs approximately 65 GWh of energy capacity – approximately 6.5 times the current

level.2 This represents an enormous investment. Yet we know very little of the economics of

electricity storage, because for long it was simply not an option.

This paper addresses this gap – in part. We study a model of electricity trading based on

storage over a long horizon and rooted in an oligopolistic market. Conventional generators

produce for immediate sale, and demand is subject to aggregate shocks.3 A storage operator

can step in and implement the simple idea of “buying low and selling high”, the details of

which are in fact quite complicated and rich.

Our main contribution is this. A storage operator must balance two essential forces: its

unilateral market power (current quantity) and continuation (the value of future trades). The

novelty lies in how this well-known trade-off materialises. On the first account, a storage unit

with large enough a capacity internalises its own market power and thus withholds quantities.

On the second one, it must have enough capacity to fully exploit the intertemporal energy

arbitrage, but not too much so as to not face large costs if being stuck empty and unable to

charge, or worse, full and unable to sell, which happens with positive probability. We call

this the continuation risk.4 Its cost increases in capacity, whence the trade-off. A storage

1Source: RenewEconmy. https://reneweconomy.com.au/south-australias-remarkable-100-per-cent-
renewables-run-extends-to-over-10-days/.

2Source: CEC report on energy.ca.gov: https://www.energy.ca.gov/news/2023-05/new-data-shows-
growth-californias-clean-electricity-portfolio-and-battery. The data shows 5GW, that is, power rating; as-
suming a (generous) 2-hour duration, this gives 10 GWh, which is energy rating.

3One can also add renewable energy with stochastic supply and conceive of the demand function as residual
demand without material consequences.

4This effect is asymmetric because of efficiency losses; it is more costly to be stuck full than empty.
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operator can delay this event by reducing the fraction of capacity traded. But this risk never

disappears, except (asymptotically) when shocks are governed by a low-persistence Markov

chain; then the continuation risk is negated.5 Capacity is thus also optimally interior. This

is really new, and completely moot in the absence of market power. Indeed, if capacity is

small enough, the cost of the continuation risk is trumped by the arbitrage gain; there is

no withholding. We explore some extensions, including the role of capacity constraints; all

confirm our results.6

Our positive analysis suggests some tentative implications for competition policy and mar-

ket design. The market is better served by a large fleet of small units; a market operator

may improve outcomes by offering a measure of insurance. An open question remains: how to

best determine the bidding space and clear a market when bidders play dynamic strategies?

We also show the success of a nascent storage industry cannot be taken for granted. Indeed

we construct a collusive equilibrium, in which generators are able to act tacitly to prevent a

storage unit from operating.7 It shows that some measure of support may be necessary to a

successful entry.

Our second contribution is more technical; we claim some progress in characterising be-

haviour (not quite equilibrium) in a dynamic game. In the stochastic game (Shapley (1953))

we study, which admits a very large number of equilibria, we must limit ourselves to studying

heuristics rather than the more desirable equilibrium strategies that remain out of reach. More

precisely we must fix a behaviour of the conventional generators and select a heuristic of the

storage operator. With this restriction, we can characterise optimal heuristics in their class,

and study some comparative statics. For simple heuristics, we uncover a recursive structure

that is tractable and allows us to compute the corresponding value function, which can then

be optimised. While these heuristics commit the storage operator to a fixed behaviour over

time, this property is not essential to our results in a sense we make precise. As in any stochas-

5To be sure this is not a quantity effect: these traded quantities are almost constant in capacity. It is the
cost of a long string of shocks in the same direction.

6Introducing a capacity constraint has the same effect as a higher marginal cost, so it speaks to hetero-
geneity as well.

7More precisely, they are able to render arbitrage unprofitable if the storage operator ever decides to incur
the charging cost. This equilibrium is subtle and interesting in its own right.
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tic game, the strategies interact with the exogenous stochastic process to induce endogenous

transitions between states. Here, this endogenous stochastic process is further enriched by

constraints on capacity and on the initial condition to generate novel dynamics. To the ex-

tent that capacity constraints are the norm rather than the exception, this is an important

contribution. This approach allows us to extend the independent case to a richer, Markovian

shock structure with more or less persistence in shocks.

The model we present in this paper can be used, possibly with some adaptations, to

market making in securities. Indeed, this intermediation activity shares many characteristics

with trading electricity through storage: assets are bought and sold, a revenue is generated

by arbitrage, holding inventory is necessary and price impact matters a great deal. The works

of Vayanos (1999) and Glebkin et al. (Forthcoming) differ from ours in that traders seek to

diversify idiosyncratic risk, whereas here the arbitrageur takes advantage of aggregate risk,

and so supplies insurance.

Storage has been in existence for some time in the form of hydro-electric power. However

storing water to generate electricity differs from having to first purchase electricity in order

to sell it later. Once a dam is built, the water inflow is free, exogenous and stochastic; in

contrast, a storage unit pays for the energy it buys, it can have (a measure of) monopsony

power, and it makes that decision optimally as part of its trading strategy. Furthermore, most

models of dam management amount to an optimal control problem rather than a game, and

ignore completely the market power of the dam operator on prices. We show that both market

power and having to buy energy are first-order considerations for a storage operator. This

work is also conceptually connected to the inventory management problem; see Harrison and

Taylor (1978) for example. However that problem is strictly one of stochastic control – not

a game, in which the per-unit payoffs (rewards or costs) are exogenous. In our model, prices

are determined endogenously, which gives rise to the trade-offs we mentioned earlier.

This paper is one of very few on the economics of electricity storage. It distinguishes

itself from the extant literature because it seeks to characterise behaviour in a stochastic

environment with market power. Karaduman (2020) is the first to study grid scale storage,
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using Australian data from the National Electricity Market. Generators and the storage

unit play an infinite horizon game and market power is internalised. However, Karaduman

(2020) does not compute the best reply; rather he simulates it from the data. Hence the

actual behaviour of the storage unit is never known. Andres-Cerezo and Fabra (2023) study

the question of market structure with storage, but leave aside how storage actually behaves.

They ask in particular “who should (or not) own storage units”. A generator enhances its

market power by also owning storage, especially at time when demand is the highest: in

those times the substitutability between storage and generation should be exploited to its

fullest, but the joint ownership of these two assets induces more quantity withholding. Butters

et al. (Working Paper) use California data to estimate the equilibrium effect of large-scale

storage. As the storage fleet expands, arbitrage revenue decreases, which hinders adoption.

In that model however storage is assumed to behave competitively. We study the details

of buying and selling with market power. Schmalensee (2022) studies storage investment,

which we take as exogenous; he models the intra-day behaviour of storage rather than short-

term arbitrage opportunities. Energy generation and storage are competitive rather than

oligoplistic.8 Williams and Green (2022) compute the welfare effects of storage on the current

British market using simulations, and so without characterising any equilibrium, with time-

varying demand and no uncertainty. Geske and Green (2020) do study arbitrage in a model

of imperfect competition with demand uncertainty and diurnal, weekly and seasonal patterns.

In such a complicated environment they must limit themselves to numerical (approximate)

solutions to the welfare maximization problem. They also exhibit precautionary behaviour –

in our case, quantity withholding. We show that market power and uncertainty are critical

aspects of the problem.

8Schmalensee (2022) also assumes that storage is fully discharged after the “nightime”, while we let the
storage operator make that decision in equilibrium.
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2 Model

Consider a market with one storage unit, n electricity generators labelled j = 1, 2, ...n, and

a pool of consumers. We simplify institutional details so that retailers and consumers are con-

founded and retailing has no cost; another way of saying this is that retailers perfectly reflect

the behavior of consumers. That behavior is described by the demand function D(pt, εt) for

each period t, where εt is a shock distributed according to some commonly known distribution

F . Each of the generators j produces a quantity of energy qjt for each period t, and may or

may not be subject to capacity constraints. The storage unit has finite capacity k. In each

period, it can either buy energy (charge) up to its capacity, or sell any amount of available

energy (discharge).9 This process can be described formally by a simple equation of motion:

ct = ct−1 + bt −
st
δ
, t ∈ N, c0 = 0. (1)

Here, ct is a current level of charge (0 ⩽ ct ⩽ k), δ is a round-trip efficiency parameter

(0 < δ ⩽ 1), and bt ⩾ 0, st ⩾ 0. A storage operator can only either buy or sell in each period,

so bt · st = 0 for any t – this is a technical characteristic. The market clears if

D(pt, εt) =
n∑

j=1

qjt − bt + st

for any t, where we suppose that players engage in Cournot competition, which requires some

justification. The norm in electricity markets it to use the more elegant supply-function

equilibrium (SFE); however the richness of the SFE is lost here since we rely throughout on

binary shocks; see Klemperer and Meyer (1989). Further, the Cournot outcome is a possible

equilibrium outcome of the SFE and constitutes an upper bound for the payoffs to suppliers

(Klemperer and Meyer (1989)).10 Finally, Cournot competition is used as a successful proxy

9We make no distinction between power and energy; it is as if a quantity were either energy or power for
a prescribed duration (e.g. for the trading interval).

10Vayanos (1999) and Glebkin et al. (Forthcoming) do use the SFE with a normal distribution of shocks
with full support and exponential utility, whence supply bids are linear. While the equilibrium is linear when
demand is linear in a one-shot game (Klemperer and Meyer (1989)), it is not clear that it must be so in our
dynamic game.
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in many papers (Acemoglu et al. (2017), Willems et al. (2009), Lundin and Tanger̊as (2020));

much of this work relies on the estimations of Borenstein and Bushnell (1999), Borenstein

et al. (1999) or Bushnell et al. (2008). Since the nature of competition is not the primary

object of interest, throughout the rest of the paper we consider a linear demand function:

D(pt, εt) = 1− pt + εt.

Rather, the goal is to find optimal policies {bt, st}∞t=0 which are the part of a dynamic

Nash equilibrium. We suppose the storage unit has a discount factor β < 1; it is exposed to

a strictly positive interest rate. Depending on the decisions of the storage operator, in each

round there may be either

• n (symmetric) competitors; or

• n+ 1 competitors, with the storage unit having a limited capacity.

In an extension we let a subset of the generators be capacity constrained, which has the same

effect as introducing heterogeneous technologies. The results are those we expect. First we

characterise the optimal variables of a static problem, which are useful throughout.11

Lemma 1. If the storage unit is a seller with c units of energy available, then the (symmetric)

equilibrium price p∗ and equilibrium quantities s∗ and q∗ under Cournot competition are:

p∗ =
1 + ε− c

n+ 1
, s∗ = c, q∗ =

1 + ε− c

n+ 1
if c ⩽

1 + ε

n+ 2
; (2)

p∗ =
1 + ε

n+ 2
, s∗ = q∗ =

1 + ε

n+ 2
if c >

1 + ε

n+ 2
. (3)

Proof. In the first case, we have Cournot competition between n + 1 players where one

of the players has limited capacity. Standard Cournot competition between n + 1 players is

observed in the second case. ■

Lemma 2. If the storage unit is a buyer with willingness to purchase c units, then the (sym-

metric) equilibrium price p∗ and equilibrium quantities b∗ and q∗ under Cournot competition

11We omit the index t if it does not lead to confusion.
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are

p∗ =
1 + ε+ c

n+ 1
, b∗ = c, q∗ =

1 + ε+ c

n+ 1
. (4)

The proof is trivial and therefore omitted. If the storage unit neither buys nor sells,

standard Cournot competition between n generators prevails, and then p∗ = q∗ = (1+ε)/(n+1)

in the symmetric equilibrium. Next we turn to the object of this paper, which is trading in

the dynamic game. We begin with a special case as an example.

3 An introductory example

Let shocks εt be independently and identically distributed,

Pr{ε = a} = Pr{ε = −a} = 1/2, 0 < a < 1 (5)

for any t. Suppose also that the storage operator can only either charge or discharge in full;

it can buy either 0 or k units of energy, or sell either 0 or δk units at each period of time.

(Thus, option (3) is not available.) For convenience, we define charging costs (when purchasing

energy) under the negative shock as B and likewise the revenue it earns when selling energy

under the positive shock as A:

B = B(k) =
1− a+ k

n+ 1
· k, A = A(k) =

1 + a− δk

n+ 1
· δk.

Observe that it cannot be optimal to charge when the shock ε is positive, nor can it be optimal

to discharge when it is negative. Let also the coefficients

G01 =

(
1 + a

n+ 1

)2

, G00 =

(
1− a+ k

n+ 1

)2

, G10 =

(
1− a

n+ 1

)2

, G11 =

(
1 + a− δk

n+ 1

)2

.

Gij is a (non-discounted) generator’s payoff when the storage is either empty (i = 0) or full

(i = 1) and when the shock is either negative (j = 0) or positive (j = 1). Suppose also the
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discount factor β is such that

B <
β

2− β
A.12

Then a dynamic equilibrium exists and is characterised as follows:13

• the empty storage buys k units with the first negative shock and sells δk units with the

first positive shock afterwards;

• in each period, the generators set quantities q∗ according to static Cournot competition

and based on the current shock and the state of storage (full or empty). Namely,

when storage is empty: q∗ =
1 + a

n+ 1
if ε = a, q∗ =

1− a+ k

n+ 1
if ε = −a;

when storage is full: q∗ =
1− a

n+ 1
if ε = −a, q∗ =

1 + a− δk

n+ 1
if ε = a.

Cumulative consumers’ expected payments per period C1 are

C1 =
1

2(n+ 1)2
(
2n(1 + a2)− ka(n− 1)− k2

)
.

Expected payoffs Us and Ug of the storage unit and the generators, respectively, take the

following form:

Us =
1

2

[
−B +

β

2(1− β)
(A−B)

]
, (6)

Ug =
1

2
(G01 +G00) +

β

4(1− β)
(G10 +G11 +G00 +G01).

Of course, this equilibrium is not the only one, but it is one that can be used to explore some

of, but not all, the salient features of the general problem. First, we see that storage increases

the output of generators when the demand shock is negative; this also increases prices (when

they are otherwise low). Storage also decreases the output of these generators when the shock

is positive; this concurrently depresses otherwise high prices. Hence every time it engages in

12Note A and B are determined in terms of primitives. This is just convenient notation.
13We prove this claim formally in the Appendix.
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arbitrage, storage decreases the very spread it feeds on.

Second, in the first instance, storage is a complement to generators but in the second one,

is a substitute for generators. These patterns are more than astute observations if considering

entry of new generation capacity; for solar generation, for example, storage is a strict comple-

ment but for thermal generators, it is both. This may matter for decisions such as entry, or

for questions of competition policy and market manipulation.

Third, a storage unit starts empty and must always first buy energy. This is apparent in

its profit function Us. The total payoff in this simple example, is the discounted present value

of the spread on energy sales (A−B) net of the first charge −B.

Finally, this example is the closest we can get to a benchmark: indeed, intertemporal

arbitrage only makes sense in a dynamic model; there is no static equivalent.

4 Trading energy over the long horizon

As we know from the literature on repeated games and on stochastic games (see, for

example, Chatterjee et al. (2003)), the game described in Section 2 admits a large number

of equilibria. Short of constructing equilibria that exhibit features the analyst seeks, it is

impossible to characterise an optimal strategy. But we wish to make progress to answer a

practical question. To overcome this problem, we reduce the space of admissible strategies in

two ways. First we focus on simple heuristics, which allows us to compute the value function

of the storage operator for that heuristic. Then we can find the optimal level of this simple

heuristic, and engage in comparative statics. In the example of Section 3, the heuristic is

trivial: charge and discharge in full at any opportunity. In what follows, we explore richer

heuristics, where capacity need not be used in full at every opportunity.

Second we must describe the equilibrium behavior of the other n players. We elect to

restrict attention to the repetition of the Cournot equilibrium stage game – see Lemmata 1

and 2. This equilibrium delivers the lowest payoffs to sellers, and entails the least quantity

distortions and the narrowest price spread. This equilibrium is simple to describe, unlike

any of the more sophisticated equilibrium strategies one can construct. Our last justification
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is the work of Bonatti et al. (2017), who study a dynamic Cournot model under incomplete

information with learning. The equilibrium converges to the repeated static Nash equilibrium.

4.1 Independent binary shocks

We stay with the simple independent shock structure (1/2, 1/2) to begin with, which affords

us some tractability, even though how much to (dis)charge is now endogenous. The objective

of the storage operator is

E

[
∞∑
t=0

βtpt(st − bt)

]
, (7)

subject to the law of motion (1) and the important capacity constraint

0 ⩽ c ⩽ k, (8)

with corresponding value function

V (c) = sup
b,s

E

[
∞∑
t=0

βtpt(st − bt)

]
.14 (9)

Then the recursive equation may be written in the following form:



V (c) =
1

2

(
−1− a+ b(c)

n+ 1
· b(c) + βV (c+ b(c))

)
+
1

2

(
1 + a− δs(c)

n+ 1
· δs(c) + βV (c− s(c))

)
,

V (0) =
1

2− β

(
−1− a+ b(0)

n+ 1
· b(0) + βV (b(0))

)
,

V (k) =
1

2− β

(
1 + a− δs(k)

n+ 1
· s(k) + βV (k − s(k))

)
,

(10)

where (1) and (8) imply 0 ⩽ b(c) ⩽ k − c and 0 ⩽ s(c) ⩽ c for any c. The function b(c) is

how much storage would like to buy if its state of charge is already c; it is different from 0

only if the shock is negative. Likewise, s(c) is how much storage with its state of charge c

would like to sell, which is relevant only under the positive shock. We aim to find functions

14We dispense proving that the Dynamic Programming Principle holds in this environment, which is quite
standard.
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b(c) and s(c) that maximize V (0) from time 0 and subject to (1) and (8). Given the nature

of the stochastic process, it is immediate that V is time-invariant.

4.1.1 Heuristic 1: proportional bids (constant fraction)

Our first heuristic calls for constant charging and discharging fractions. For example,

starting from empty, if the chosen fraction is 1/2, the storage operator charges k/2 = c, which

is now the new state of charge. If facing another negative shock, she charges (k− c)/2 = k/4,

now the state of charge is c = 3k/4. If facing a positive shock instead, she discharges c/2 = k/4,

so the state of charge is c = k/4. And so on. More formally, b(c) = r(k − c) or s(c) = rc,

respectively (0 ⩽ r ⩽ 1). This problem is rendered complicated for two reasons. First,

the constraint 0 ⩽ c ⩽ k implies that, while the action (buy or sell) is governed by the

stochastic shock, its quantum depends on the state c. Second, the grid of the state space

grows exponentially (if r < 1). In addition, a storage unit cannot start from an arbitrary

state, but it must commence at c = 0. Hence it can be stuck at that level for some period

before being able to charge and start trading. Nonetheless there exists a recursive structure

that can be exploited. Let b(c) = r(k − c) and s(c) = rc and

B(rk) =
1− a+ rk

n+ 1
· rk, A(rk) =

1 + a− δrk

n+ 1
· δrk.

Proposition 3. The overall expected profit of storage is

UP
s =

1

2[1− (1− r)β]

(
−B(rk) +

βr

2(1− β)
(−B(rk) + A(rk))

)
+

β

1− β

k2r3(1− r)(1 + δ2)

4(n+ 1) (1− (1− r)2β)
. (11)

The proof of this Proposition, as all others, is relegated to the Appendix, Section A.2.

Expression (11) entails three elements, abstracting from the multiplier that is a modified

discount factor. The first term in the bracket is the cost of the initial charge. The second term

is the discounted arbitrage profit from the first trade onward; this is the simple “buy low, sell

high” mantra. The last term is strictly positive and not at all connected to arbitrage since it
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is independent of a, and r is only linearly connected to k (so its optimum is independent of k).

It represents the benefit of flexibility in the face of uncertainty. Indeed, when r = 1, as in the

introductory example of Section 3, this last term is zero, and all the weight is assigned to the

arbitrage revenue. This term is largest for some interior value, which captures this notion of

flexibility that arises from the asymptotic behaviour of this heuristic. That is, facing a series

of identical shocks, for example, negative shock, the storage unit buys less and less energy.

But upon a reversal, it sells a lot. We come back to this point later.

The payoff given in (11) is expressed in terms of the capacity k of the storage unit and

its choice of heuristic r, as are the quantities A(rk) and B(rk). This allows us not only to

find the optimal proportion r to maximise UP
s , but also to engage in comparative statics with

respects to k. The first-order condition of (11) does not lend itself to easy manipulation nor

interpretation, but Condition (11) can be graphed. To this end, let n = 2, δ = 0.95, and

β = 0.95. Consider payoffs values for different capacities and shock magnitudes. Figure 1

corresponds to high shocks a = 0.6 with capacity k moving from 0.15 to 1.15, and Figure 2

corresponds to low shocks a = 0.2 where k changes from 0.05 to 0.3.

0.2 0.4 0.6 0.8 1.0
r

-0.2

-0.1

0.1

0.2

0.3

U

k:

0.15

0.35

0.55

0.75

0.95

1.15

Figure 1: Payoff functions UP
s (r) for different capacities k when the magnitude of the shock is high

enough: a = 0.6.
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0.2 0.4 0.6 0.8 1.0
r

-0.02

-0.01

0.01

U

k:

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2: Payoff functions UP
s (r) for different capacities k when the magnitude of the shock is low:

a = 0.2.

First we see that for small relative capacity k/a, it is optimal to charge and discharge in full at

each opportunity. This is the heuristic of our introductory example. It is easy to understand:

with a small capacity, the storage unit cannot wield much market power, so the arbitrage

spread is not eroded by the full use of capacity. Second, from the lowest relative capacity, the

maximum of the payoff function UP
s increases as capacity expands, however only to a point.

Third, concurrently, as relative capacity increases, the optimal proportion r decreases: large

storage units use less of their capacity in any single trade. This is apparent from (11), where

the arbitrage term (A−B) rapidly decreases in k.

We also see that very small values of r deliver no surplus at all even though there are no

fixed costs; this is apparent from (11) as well: at r close to zero, there is neither arbitrage nor

flexibility. These “frictions” can be explained too: when r is very small, the quantities traded

keep decreasing rapidly and become negligible in finite time. This nullifies the arbitrage spread

A(rk) − B(rk), and the continuation value after the first charge rapidly becomes negligible,

but that first charge is a cost.

Finally, very small shocks cannot sustain the operations of a storage unit, as we see from

Figure 2. For a relatively large capacity, a storage unit can only make losses – and so should

not enter the market. This is easy to understand: with small shocks ε, the spread can only

be small. Any quantity bought or sold by the storage unit erodes it, and a (relatively) large
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capacity easily nullifies that spread for any choice of r.15This can also be seen from the profit

function (11), which is linear in a but quadratic (negative) in k.

There are considerable subtleties to these findings, the discussion of which we postpone

until after presenting our second heuristic.

4.1.2 Heuristic 2: constant quantities

Here the storage operator buys or sells a constant quantity X (e.g 10MW) each period,

starting from empty as well. To avoid having to deal with partial fills at the boundaries,

we let X := k/m, so m is the number of steps to move from empty to full. In the set of

admissible strategies, restricting m to be an integer may not be fully optimal, but we expect

the corresponding loss to be small – if it exists.16

The constraints at 0 and at k matter even more here than in the proportional case. Un-

der the proportional heuristic, boundaries are never reached: the storage unit can never be

completely full nor completely empty in finite time. But here it becomes completely empty or

completely full with positive probability. This induces rich dynamics that we label “waves”.

Handling these waves is the main challenge in this otherwise simple environment. First let

B

(
k

m

)
=

1− a+ k/m

n+ 1
· k

m
, A

(
k

m

)
=

1 + a− δk/m

n+ 1
· δ k

m
.

Now consider a standard binomial tree representing the state space as drawn in Figure 3.

15Even though the relative capacity k/a is almost constant for each choice k across Figures 1 and 2.
16This is actually duly verified in Section 4.1.4.
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0
t

B

A

B

A

A

B1 2 3 4

k
m

− k
m

2k
m

−2k
m

Figure 3: No boundaries. A and B available in any point.

Starting from zero, truncate this binomial tree from below – this leaves the top half of the

tree, as in Figure 4. In this Figure, the light gray area is the region where the probability

weights that cannot go down start going up instead. This changes the probabilities of reaching

any node; for example, the point with coordinates (1, 0) can be reached from the preceding

node (0, 0), whereas in unconstrained the binomial tree (Figure 3), it can never be reached.

Likewise for the point (2, 1), which can be reached from (1, 0) in the truncated tree but never

in the unconstrained tree. In turn this affects the probability of reaching (3, 1), which is

accessible in both cases. The states with affected probabilities are marked with a thicker dot.

0
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B

B

A

B

B

A

B

A

1 2 3 4

k
m

2k
m

3k
m

Figure 4: One bound – 0. There is no A in state c = 0.

Then truncate this tree further from above at the capacity level k to create a tunnel. This

is depicted in Figure 5. The admissible state space is limited to that tunnel, in which we

already know either new states can be reached, or some states can be reached with different
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probabilities. This upper boundary modifies the state space in much the same way, but in

the other direction. Hitherto unreachable states can be reached, and the probability mass

on already reachable states can be changed. In Figure 5 the darker gray area represents a

second region, in which the upper bound k becomes active and forces the probability mass

back down; hence the waves. This process continues on over the infinite horizon, and the

successive reflections at the boundaries perpetuate these waves.

0
t

B

B

B
A

B

1 2 · · ·

. .
.

m−1 m1 m+1 m+2 m+3

k
m

2k
m

(m−1)k
m

k

...

Figure 5: Two bounds – 0 and k. Here there are three types of thickness of points (states), depending
on how many waves affect the corresponding probability (here, 0, 1, or 2). There is no A in state
c = 0 and no B in state c = k.

These waves are periodic, which suggests a recursive structure can be uncovered. We are able

to exploit this and compute the value function of the storage operator for this heuristic too.

Proposition 4. The overall expected profit of the storage operator is

UC
s =

−B(k/m) + βA(k/m)

2(1− β)
− A(k/m)

β

∞∑
i=1

(
β

2

)2i(
Ci−1

2i−1 +
β

2
Ci

2i

)

+
1 + β

β

(
B

(
k

m

) ∞∑
j=0

(
β

2

)(m+1)(2j+1) ∞∑
i=0

(
β

2

)2i

Ci
2i+(m+1)(2j+1)

− A

(
k

m

) ∞∑
j=1

(
β

2

)2(m+1)j ∞∑
i=0

(
β

2

)2i

Ci
2i+2(m+1)j

)
. (12)
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Using the formula
∞∑
i=0

βiCi
2i+r =

2r√
1− 4β

(
1 +

√
1− 4β

)r
from Graham et al. (1994) (p. 203) and introducing the new discounting coefficient

β̃ =
β

1 +
√
1− β2

,

(12) rewrites more compactly as

UC
s =

1

2(1− β)

(
−B

(
k

m

)
+ β̃A

(
k

m

)
(13)

− 2
√
1− β2

β

β̃
m+1

1− β̃
2(m+1)

(
−B

(
k

m

)
+ β̃

m+1
A

(
k

m

)))
.

In (12), the C l
n terms are binomial coefficients. Of course, (13) is a a lot easier to under-

stand. This payoff function contains two parts – ignoring the multiplier, which is a simple

discount factor. The first part −B + β̃A captures the payoff that accrues from the stochastic

process depicted in Figure 4. It is the sum of the risk-free arbitrage spread −B + A (again,

the mantra “buy low, sell high”), which results from the unconstrained process represented

in Figure 3, and having to forego the the “short-selling” revenue −(1 − β̃)A because of the

constraint 0 ≤ c. The second part is the cost of observing the initial constraint c ≤ k, and all

the subsequent repetitions of the constraints 0 ≤ c ≤ k that follow because of the waves. This

last terms embeds what we call the “continuation risk”: the storage operator may keep buy-

ing energy and fail to sell for a long time, which renders the operation unprofitable. Here the

constraint c ⩽ k actually helps: it caps losses from buying energy “forever” – more precisely,

for a long time before selling it. This last term also show cases a trade-off in the number of

steps m to charge and discharge: for large enough m, −B + β̃m+1A turns negative, but then

the multiplier in front of that bracket converges to zero. Too few steps are bad, and so are

too many; indeed in Figure 6, m is clearly interior.

The payoff function (13) thus differs from (11) for with proportional bids, the boundaries

are never reached (once the lower boundary has been exited). Furthermore, the the con-
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tinuation risk is milder with proportional bids thanks to the asymptotic behaviour r < 1

induces.

As with the proportional case, we graph this function using the same parameters as before.

The dots on the curves correspond to the actual choices that are possible – a fixed quantity,

e.g. 0.5. Let n = 2, δ = 0.95, and β = 0.95. Fig. 6 shows high shocks a = 0.6 with capacity

k moving from 0.15 to 1.15, and Fig. 7 depicts low shocks a = 0.2 where k changes from 0.05

to 0.35.

k:

0.15

0.35

0.55

0.75

0.95

1.15

Figure 6: Payoff functions UC
s (r) for different capacities k when the magnitude of the shock is high

enough: a = 0.6.

k:

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 7: Payoff functions UC
s (r) for different capacities k when the magnitude of the shock is low:

a = 0.2.

Overall Figures 6 and 7 complement nicely Figures 1 and 2; they simultaneously enrich them,

and confirm the overall message. That is, the optimal quantity choice is interior except for a
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very small capacity, and rapidly much less than k as capacity increases. In turn the optimal

capacity choice is also interior so as to not wipe out the arbitrage spread with the continuation

risk. Finally, too small a shock induces too small a spread, which cannot sustain storage.

4.1.3 The main point

Up to some details, the two heuristics we study convey the same message. Fix a capacity,

the storage operator is a monopolist on its arbitrage opportunities and behaves as such. Its

profit function is concave in the variable of interest (be it r or m) and it internalises the well-

known trade-off between the extensive margin and the intensive margin. This is the usual

market power effect.

Things are quite different when it comes to capacity – even if not quite a choice variable

but rather a parameter. In brief, a larger capacity allows the storage unit to better manage

the “continuation risk”: the risk of being stuck at (or arbitrarily close to) a boundary. But

too large a capacity exacerbates the cost of being stuck: indeed, the storage unit can finds

itself repeatedly buying and then unable to sell for a long time. There is a trade off there too.

In other words, more capacity allows for more flexibility in the choice of quantities traded to

delay hitting the boundary – for example, m = 2, m = 3, m = 4 in Figure 6. But beyond a

level, it only increases the cost at the boundary (m = 6, m = 7), for then storage takes too

long to revert its position. We emphasize the continuation risk is moot absent market power,

for then the arbitrage gain dominates and the unit charges and discharges in full at every

opportunity.

To validate this interpretation, in Section A.3 of the Appendix we compute the quantities

corresponding to each m (and r); they increase slightly for the proportional heuristic, but

are almost constant for the second one. Continue with Figure 6: the choice of m = 2 for

k = 0.35 is improved upon by a quantity increase for m = 3 when k = 0.55, but the quantity

corresponding to m = 5 when k = 0.95 is essentially the same. So why is the payoff lower

then? It cannot be the impact of quantities; rather it is the continuation risk, the cost of

which now dominates.
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The skeptic may argue the heuristics we study are too rigid in that they commit the

storage unit to the same action regardless of the state of charge c. Why keep charging as one

approaches full charge? First, this is strictly true only under the constant-bid heuristic; under

proportional bids, r is constant but the quantities traded keep declining. Second, under a less

committal strategy, a large-capacity unit could stop charging after some steps and wait for a

reversal – that is, stop increasing its cost. But this is exactly the same as choosing a smaller

capacity. That is, the optimal capacity remains interior.

Finally, previewing Section 4.3 in which we allow for Markovian shocks of arbitrary per-

sistence, the continuation risk vanishes as persistence decreases: there is (almost) no risk of

being stuck at a boundary.

4.1.4 Robustness check: a more general version of constant bids

One can wonder how much is lost from not only selecting a heuristic such as constant

bids, but also from simplifying that heuristic to factors of k – i.e. X = k/m. In this section

we relax this simplification (so, X ̸= k/m). In Figure 8 we show the event tree for the case

k/2 < X < k.

0
t

B(X)

A(X)

B(k − X)

B(X)

1 2 3 4 5

· · ·

k −X

X

k

Figure 8: All trajectories in the first five periods across four possible states of charge when k/2 <
X < k.

We see that even with this more flexible structure (and k/2 < X < k), there are only four

possible states of charge: 0 (empty), X, k − X, and k (full). The main difference from the

previous case is that when storage is in state of charge X and faces a negative shock again, it

cannot buy X units of energy again. Instead, it has to buy the remainder to its full capacity,
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which is k − X < X. So, starting from empty (0), the first step is “large” and if charging

a second time it is smaller. The same thing works when the storage unit only holds charge

k − X and faces one more consecutive positive shock. Then it can sell only the remaining

capacity k −X of energy to become completely empty.

A finer structure allowing for more steps has k/(m + 1) < X < k/m, m ≥ 1, and we

immediately see from Figure 8 that for any m ≥ 1, only the last step in either direction may

be curtailed – just as for for two steps. We are able to obtain expressions for the storage

payoffs for k/3 < X < k/2, k/4 < X < k/3, and k/5 < X < k/4. Analytical results for

smaller X (that is, m ⩾ 5) are out of reach because of the expanding size of the transition

matrix.

Proposition 5. Assume the storage unit sets constant bids X (k/(m+1) < X < k/m) when

it buys under any state of charge different from mX or when it sells under any state of charge

different from k − mX. Otherwise, the storage unit bids k − mX when it either buys under

state mX or sells under state k −mX. The expected profit of storage reads:

1. For 1/2 < X < 1 (m = 1):

UX
s = −1

2

(
B(X) +

β

2− β
B(k −X)

)
+

β

4

(
D(X) +

β2

4− β2
D(k −X)

)
; (14)

2. For 1/3 < X < 1/2 (m = 2):

UX
s = − 1

2− β

(
B(X) +

β2

2(2− β2)
B(k − 2X)

)
(15)

+
β

4− β2

(
D(X) +

β4

8(2− β2)
D(k − 2X)

)
;

3. For 1/4 < X < 1/3 (m = 3):

UX
s = − 1

2(2− β2)

(
(2 + β)B(X) +

β3

4− 2β − β2
B(k − 3X)

)
(16)

+
β

8(2− β2)

(
(4− β2)D(X) +

β6

(4− β2)2 − 4β2
D(k − 3X)

)
;
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4. For 1/5 < X < 1/4 (m = 4):

UX
s = − 1

4− 2β − β2

(
2B(X) +

β4

2(4− 3β2)
B(k − 4X)

)
(17)

+
β

(4− β2)2 − 4β2

(
2(2− β2)D(X) +

β8

4(4− β2)(4− 3β2)
D(k − 4X)

)
;

where D(X) is the NPV of the arbitrage spread:

D(X) =
A(X)−B(X)

1− β
.

Echoing the introductory example, the first term in all these formulae is the initial purchase

cost, and the second one is the arbitrage spread. Both are suitably discounted.

4.1.5 Comparing heuristics

In Figures 9 and 10 we directly compare the performance of the heuristics we study and

of the more flexible approach (still restricted to 1/5 < X < 1) of the preceding section. Red

represents linear bids, blue stands for constant bids with integer m, and purple shows the

payoffs from bids for any X ∈ (k/5, k). The graphs of these payoff functions feature kinks

at each of the integer m because altering m amounts to altering the regime under which the

storage unit operates. The first series is concerned with relatively large shocks (a = 0.6), and

the second one with small shocks (a = 0.2).

First, it is difficult to rank the two main heuristics. While constant quantities do not

systematically dominate proportional bidding, the maximum always exceeds – at least weakly –

the maximum achieved under the proportional rule, but this may be sensitive to the parameter

values we use. We can also see that as capacity k increases, the linear-bid heuristic performs

better. This improvement stems from the more flexible nature of this heuristic, which never

reaches the boundaries for any r < 1 and commits the storage operator to either buy ever

smaller quantities (in a sequence of negative shocks), or conversely. Further, for r large

enough, as soon as reversal does occur, the quantity sold at the first positive shock (or bought

at the first negative shock), is large. This is an approach that is both more prudent and more
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flexible, which is comparatively better when capacity is large. Indeed, for large shocks and

large capacity (the four bottom panels of Figure 9), the maximizer under the proportional rule

lies to the right of the maximizer under constant bids, and the constant-bid heuristic clearly

dominates for (many) small steps. A large m delays reaching a boundary at which the storage

unit may be stuck. Second, under constant quantities, a storage unit is immune to the (small)

losses that accrue under the proportional heuristic when the quantities are very small. Under

constant bids, the quantities never become vanishingly small, so the arbitrage revenue is never

negligible. Finally we can see that large shocks are completely essential to profitable trading,

as seen in Figure 10. There a large capacity is of little use.

Of course these differences in behaviour stem from the difference in the stochastic process

that is induced by the choice of heuristic. That is, the heuristics interact with the exoge-

nous stochastic process to define an endogenous process; this is what defines a stochastic

game Shapley (1953). Under the proportional heuristic, the capacity constraint induces an

asymptotic path but the binomial tree itself is never truncated. This is what makes it more

flexible than the constant-quantity approach, which modifies the binomial tree outright and

generates reflections.

From Figure 9 we see that, except for very small capacity k (in which case m = 1 is

optimal), relaxing the integer constraint and allowing X ∈ (k/5, k) (in purple) delivers a

modest improvement compared to X ∈ {k/m,m ∈ N}. For the majority of cases it finds a

new optimum that beats the other two heuristics – for example, 2 < m < 3 for k = 0.65.
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Figure 9: Both linear and constant bids payoffs in the same graphs for different k and a = 0.6.

Finally, we remark that this more flexible heuristics approximately behaves like some kind of

combination of the constant bid and proportional bid approaches. This robustness check gives

us comfort in thinking that the heuristics we study operate “not far” from the strictly optimal

strategy.
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Figure 10: Both linear and constant bids payoffs in the same graphs for different k and a = 0.2.

4.2 Exclusion equilibrium

The emergence of storage is not a foregone conclusion, even absent entry costs. Below

we present an equilibrium of the repeated game, in which the storage operator never finds it

profitable to incur the cost of the first charge. To make this point we must revert to a simpler

structure, in which the storage operator always charges and discharges in full; that is, r = 1

or m = 1.17

17That is not to say this equilibrium does not exist for r < 1 or m > 1; the equilibrium we present is one
of many that can be constructed.
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Proposition 6. Assume that

(1 + a)2(n+ 1)2

4n(1 + a2) + (1 + a)2(n+ 1)2
⩽ β ⩽

2

1 +
2δ(1 + a− δk)

(n+ 1)(1− a+ 2k)

. (18)

Then there exists a dynamic Subgame Perfect Nash Equilibrium, such that:

• in each period, the generators set quantities

– ε = −a:

• q∗ = 1−a
2n

if none of the generators deviated in the previous rounds,

• q∗ = 1−a+k
n+1

if storage is empty and any of the generators deviated in the previous

rounds,

• q∗ = 1−a
n+1

if storage is full and any of the generators deviated in the previous

rounds;

– ε = a:

• q∗ = 1+a
2n

if storage is empty and none of the generators deviated in the previous

rounds,

• q∗ = 1+a
n+1

if storage is empty and any of the generators deviated in the previous

rounds,

• q∗ = 1+a−δk
n+1

if storage is full;

• storage does not enter the market if none of the generators have deviated; otherwise,

storage enters the market if

B <
β

2− β
A. (19)

Cumulative consumers’ expected payments per period C0 are

C0 =
1 + a2

4
.

Expected payoffs U0
g and U0

s of the generators and the storage unit, respectively, take the
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following form:

U0
g =

1 + a2

4(1− β)n
, U0

s = 0.

In this equilibrium, generators collude to the joint-profit maximising quantities and the

storage unit never charges. Equilibrium play must deter two kinds of deviations. First, the

generators must elect to not deviate; this is supported by the threat of Cournot reversion,

which is subgame perfect. Second, the storage operator also prefers not charging, otherwise

the punishement reverts to the equilibrium described in the introductory example, which is

therefore also subgame perfect. This threat is sufficient because the charging cost is too high

compared to what the storage unit can collect once players enter the punishment phase. That

is, the strategic effect working through market power supports the equilibrium. Absent market

power this equilibrium does not exist.

Storage is excluded because it starts empty and must first charge to become active. This

is an important consideration that is not studied to its full extent in the works of Andres-

Cerezo and Fabra (2023), where exclusion is not considered. It is also irrelevant in the model

of Butters et al. (Working Paper), where storage is assumed to behave competitively, in which

case the spread is not sensitive to market power. This result makes it plain that starting from

empty is not just costly for the storage operator; it can be socially costly as well since storage

if welfare enhancing in this model. Exclusion may thus be overcome with the help of a small

subsidy. Here it is enough to cover the first charge to not only foster storage activity, but also

to unravel the collusive equilibrium.

4.3 A richer Markovian structure

The payoff functions we can compute in Section 4.1 feature a cost of uncertainty – see

equations (11) and (12). This cost stems for the risk of facing multiple negative shocks, which

induce an incentive to charge, but being already fully charged, and conversely.

A glance at the payoff functions (11) and (12) suggests that a sequence of perfectly nega-

tively correlated shocks −a, a,−a, a, ... would deliver the highest (and certain) payoff. In this
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Section we relax the strict independence assumption and investigate the constant-quantity

heuristics when shocks follow a non-degenerate Markov chain, and can be made either not

persistent or to carry significant persistence. The goal is to better understand the impact of

risk on the behavior of the storage operator.

To this end, we consider a case where the storage buys and sells its capacity in any of

one step (m = 1), two steps (m = 2) or three steps (m = 3); richer heuristics, with m > 3

are no less interesting but beyond what we can manage. With m = 2, for example, there are

four possible states of charge that are payoff relevant: an empty unit, a half-full unit after the

negative shock, a half-full unit after the positive shock, and finally a full storage unit. There

is no need to distinguish the nature of the shock at the boundaries because states 0 and k are

accessible only after positive and negative shocks, respectively. Assume now that shocks εt

form a discrete-time Markov chain:

Pr{ε0 = a} = x, Pr{ε0 = −a} = 1− x,

Pr{εt+1 = a|εt = a} = x, Pr{εt+1 = −a|εt = a} = 1− x,

Pr{εt+1 = a|εt = −a} = 1− y, Pr{εt+1 = −a|εt = −a} = y

(20)

for any t ⩾ 0. We denote the transition matrix by Q and its determinant by d:

Q =

 x 1− x

1− y y

 , d = detQ = x+ y − 1,

and we let the functions A(k/m) and B(k/m) be defined as before.

Proposition 7. Under conditions laid out below, there exists a dynamic equilibrium, such

that

• the storage unit buys k/m under the negative shock until it reaches capacity k and sells

δk/m under the positive shock until it becomes empty;

• in each period, the generators set quantities q∗ according to static Cournot competition
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and based on the current shock and the state of the storage (full or empty). Namely,

q∗ =
1− a

n+ 1
if storage is full and ε = −a,

q∗ =
1− a+ k/m

n+ 1
if storage is not full and ε = −a,

q∗ =
1 + a

n+ 1
if storage is empty and ε = a,

q∗ =
1 + a− δk/m

n+ 1
if storage is not empty and ε = a.

1. m = 1; this equilibrium exists if

B <
β(1− y)

1− βy
A. (21)

and the expected payoff of the storage operator U1
s takes the following form:

U1
s =

1− x

(1− β)(1− βd)
(−B + β(1− y)A+ βyB) .

2. m = 2; this equilibrium exists if

B

(
k

2

)
<

β(1− y)(1 + β2d)

1− β2(1− x+ yd)
A

(
k

2

)
, (22)

and the expected payoff of the storage operator U2
s takes the following form:

U2
s =

1− x

(1− β)(1− βd)

(
−B

(
k

2

)
+ β(1− y)A

(
k

2

)
+ β2y

yB
(
k
2

)
+ βx(1− y)A

(
k
2

)
1− β2(1− x)(1− y)

)
.

3. m = 3; this equilibrium exists if

B

(
k

3

)
< β(1−y)

(1− β2(1− x)(1− y))
2
+ β2xy (1 + β2(xy − 2(1− x)(1− y)))

(1− β2(1− x)(1− y))2 − β3y3 − β4xy(1− x)(1− y)
A

(
k

3

)
,

(23)
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and the expected payoff of the storage operator U3
s reads

U3
s =

1− x

(1− β)(1− βd)

[
−B

(
k

3

)
+ β(1− y)A

(
k

3

)

+ β3y
y2B

(
k
3

)
+ x(1− y) (1 + β2d)A

(
k
3

)
(1− β2(1− x)(1− y))2 − β4xy(1− x)(1− y)

]
.

When there is little persistence, the probability of being stuck at either boundary 0 or k is

small; that is, the storage operator is almost guaranteed to reverse direction – for example, sell

after charging. Compared to Section 4.1.2, the “waves” unfold faster. In turn, this stokes the

incentives to charge in the first place, and so on. These rapid cycles reduce the uncertainty, but

not the volatility ; in fact, certain volatility is best for the storage operator. Low persistence

effectively negates the continuation risk.

More generally, the payoffs Um
s , m = 1, 2, 3 include two terms: the first one is −B(k/m)+

β(1 − y)A(k/m), which is, modulo a multiplier, the discounted payoff from charging and

discharging every other period. This is a storage unit operating under perfect foresight. The

second term captures the cost of uncertainty, as best-responded to by the storage operator.

Here the parameters and the best reply interact richly, as we show next.

In Figures 11 and 12 we plot the payoff functions of the storage operator projected on the

dimensions x and y, which denote persistence, and with x = y. The red stands for the payoff

function whenm = 1, the blue form = 2 and the green form = 3, all for the constant-quantity

heuristic. All other parameters remain as in the other plots. Low persistence is clearly better

in this environment, but we note that in some cases a very high persistence seems to improve

payoffs over a moderate persistence. With higher persistence there are fewer cycles, each of

which induces some losses; high persistence delays the onset of each these cycles.

When capacity is relatively small (compared to the shock), it is best to charge and discharge

in full (m = 1) for almost any persistence. The reason is that the storage operator has

no (significant) market power, so there is no (significant) price impact. But when capacity

increases, we observe more mixed results. First, as persistence increases, flexibility becomes

valuable: charging and discharging in two steps and three steps starts dominating. It is better
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able to cope with the uncertainty of the shocks. Second, with a large(r) capacity, restraint

also pays off: charging and discharging in two steps (blue) dominates one step (red) for any

persistence; and three steps (green) dominates both. It is best to not use the capacity in

full at any point in time because of the market power effect, and this is exactly what m = 3

delivers. These conclusions are replicated, but even starker, when shocks and capacity are

even smaller. Then, in some cases, the three-step strategy is the only one that can deliver any

positive surplus.

With this simple structure it is difficult to speak of the impact of high persistence in greater

detail. With a lot of persistence in shock (x → 1 or y → 1), the storage operator can spend a

lot of time at either boundary (0 or k); if that is the case, one can conjecture she would like

to buy or sell over many periods (so, m be large). We cannot treat this case, and aside from a

strict numerical treatment, there is no hope of doing so because even a computer cannot find

the eigenvalues of the matrices of interest.
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Figure 11: Payoffs under symmetric Markov shocks for divisible (green for k/3 and blue for k/2) and
indivisible (red) capacities in the same graphs for different k and a = 0.6.
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Figure 12: Payoffs under symmetric Markov shocks for divisible (green for k/3 and blue for k/2) and
indivisible (red) capacities in the same graphs for different k and a = 0.2.

4.4 Binding capacity constraints

So far generators are unconstrained in their ability to supply energy; in consequence they

always supply according to their best response and clearing prices are standard “Cournot

prices” with limited markups that reflect the relative competitiveness of the market. In elec-

tricity, binding capacity constraints are a major concern – for then aggregate supply may not

meet demand – and they are reflected in widely fluctuating prices. Large price fluctuations

invite arbitrage. In this section we study this environment.
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We consider the same model with n generators with large capacity for it to never be a

constraint (as before), but also with m generators of smaller capacity κ. Let qn and qm be

corresponding quantities for each type of the generators. The point can be made by confining

ourselves to (a) binary shocks and (b) a storage unit that sells either 0 or k – as in the

introductory example. Then we can adapt the quantities and prices from this example almost

directly:

Lemma 8. If the shock is positive (ε = a), then the storage unit is a seller with δk units

to sell and the equilibrium price p∗ and equilibrium quantities s∗, q∗n, and q∗m under Cournot

competition are:

p∗ =
1 + a− δk

n+m+ 1
, s∗ = δk, q∗n = q∗m =

1 + a− δk

n+m+ 1
if κ ⩾

1 + a− k

n+m+ 1
;

p∗ =
1 + a− δk −mκ

n+ 1
, s∗ = k, q∗n =

1 + a− δk −mκ

n+ 1
, q∗m = κ if κ ⩽

1 + a− k

n+m+ 1
.

If the shock is negative (ε = −a), then the storage unit is a buyer with k units to purchase and

the equilibrium price p∗ and equilibrium quantities b∗, q∗n, and q∗m under Cournot competition

are:

p∗ =
1− a+ k

n+m+ 1
, s∗ = k, q∗n = q∗m =

1− a+ k

n+m+ 1
if κ ⩾

1− a+ k

n+m+ 1
;

p∗ =
1− a+ k −mκ

n+ 1
, s∗ = k, q∗n =

1− a+ k −mκ

n+ 1
q∗m = κ, if κ ⩽

1− a+ k

n+m+ 1
.

As one expects, price increases and quantities decrease when constraints start binding. As

elsewhere in this paper, we compute the charging costs B (when purchasing) and revenues A

(when selling), and expected payoff, as follows:

Proposition 9. In the presence of capacity constraints, the costs and revenues of a storage
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operator are

B =
1− a+ k

n+m+ 1
· k, A =

1 + a− δk

n+m+ 1
· δk if κ ⩾

1 + a− k

n+m+ 1
; (24)

B =
1− a+ k

n+m+ 1
· k, A =

1 + a− δk −mκ

n+ 1
· δk if

1− a+ k

n+m+ 1
⩽ κ ⩽

1 + a− k

n+m+ 1
;

(25)

B =
1− a+ k −mκ

n+ 1
· k, A =

1 + a− δk −mκ

n+ 1
· δk if κ ⩽

1− a+ k

n+m+ 1
. (26)

The corresponding payoffs read

Us =
1

2

[
−B +

β

2(1− β)
(A−B)

]
.

This payoff function is easy to understand: it is the NPV of the arbitrage spread A − B,

accounting for the fact that the storage operator can buy and sell at most every other period

and net of the first charge B. This expression for Us is as in (6), modulo the definitions of

A and B. We can also see that only the intermediate case is interesting: when the capacity

constraint binds when charging and discharging, the payoffs are simply re-scaled.18 Hence we

focus on (25). In what follows, let κ = 1/(n+m+ 1).

We would like to understand how changes in the number of generators with limited ca-

pacity m affect storage profits. One can reasonably anticipate that as supply becomes more

constrained, prices increase and the payoff to storage increases in consequence. Indeed, let

N = m + n and let m vary simply from 0 to 10, when the capacity constraint binds, qn

decreases and p∗ increases. As before, consider δ = β = 0.95. Also, assume n = 4 and k = 0.4.

Our first figure (Figure 13) conforms with intuition: fix the number N but increase m –

so a larger fraction of the generators become constrained – and the payoff to the storage unit

uniformly increases. This is simply due to the fact that arbitrage A−B become increasingly

more profitable. As m keeps increasing, so does this spread and the storage unit becomes the

only supplier that can meet demand in the high demand state. This makes for a very large

18Cases (24) and (26) are exactly the same as we considered in the introductory example: we just have
n+m symmetric generators instead of n ones in case (24) and some shift mκ in demand in case (26). Thus,
the only potentially interesting change of behavior may be observed in case (25).
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market power, as well as a large spread; the payoff is convex in m for all values of the shock

a we consider. Indeed, in (25), n + m + 1 = N + 1 is fixed and n + 1 = N − m + 1 keeps

decreasing, so A−B keeps widening.

2 4 6 8 10
m
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0.10

0.15

0.20

0.25
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U

a:

0.42

0.46

0.5

0.54

0.58

0.62

0.66

Figure 13: Change of monotonicity in storage payoff functions in case (25) under different a.

An alternative take on increasing m is to fix n but vary m – so that the total N also varies.

That is, the proportion of constrained generators vary, but the total system capacity and the

number of players also increase. We represent this in Figure 14. It shows that the payoffs to

storage increase with the number m of generators with binding capacity when a is close to k,

but decrease when a is significantly larger than k.
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0.54
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0.66

Figure 14: Change of monotonicity in storage payoff functions in case (25) under different a.

Things are quite different now. This difference stems from the asymmetric effect of storage

on prices when buying and selling. The storage operator buys when the shock is negative and

no generator is constrained, but it sells only when m of the N generators are constrained. So
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now the combination of a and m matters. While increasing a linearly increases both A and B,

and therefore the spread A−B, increasing m geometrically decreases B but linearly decreases

A. When a is large, the geometric effect on B dominates so increasing m negatively affects

the payoff to storage. The market is “too competitive”. When a is small, the linear effect on

A dominates. The net effect is that the payoff to storage increases in m.

4.5 Implications for competition policy and market design

Our results reveal a strategic storage operator withholds quantities for two essential rea-

sons. One, they want to exercise their market power; second, they seek to actively manage

the continuation risk.

On both accounts it is socially best for the storage units to remain small. It is tautological

but nonetheless useful to recall that it is easier to mitigate the exercise of market power if

storage has no market power. A small unit (compared to the magnitude of the shocks) uses

its full capacity every time it trades. The reason is that the arbitrage gains dominate the

continuation risk. Whether any of this is implementable in practice depends in part on the

exact storage technology. Economies of scale favour a large size, but batteries tend to display

constant returns to scale.

On a different register, Andres-Cerezo and Fabra (2023) show storage and conventional

generation should not be integrated, for integration enhances market power. We also show

that the storage operator can be excluded by colluding generators. But if the storage operator

can charge anyway, or charge at a preferential price, then exclusion may not occur. Hence

some qualified integration of storage and generation, for selected generation technologies (e.g.

solar), may facilitate the emergence and operation of storage. The difference is that storage

is a substitute for thermal generation (at critical times) but it is (typically) a complement

for renewable generation. These benefits do not exist in the work of Andres-Cerezo and

Fabra (2023), since exclusion is not considered and there is no distinction between generation

technologies. This is also not a consideration in Butters et al. (Working Paper), where storage

is competitive by assumption.
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There may also be a role for a market operator to play insuring the storage unit against

the risk of being stuck either full or empty. The operator could tax transactions and disburse

these premia to encourage a full unit to sell at a low price (when the shock is negative), or

an empty one to buy at a high price (conversely). We note this counters the insurance service

implicit in the activities of the storage unit, and increases price volatility. However this is not

very different from a reinsurance contract.

Finally, we ask, but are yet unable to answer, how should a bidding space be defined

and a market be cleared when bidders use dynamic strategies. Indeed, if storage units are

forward-looking, so should be the market operator.

5 Conclusion

In this paper we study the dynamic trading of electricity based on storage. This is an

important step to understand the economics of electricity storage, and to tackle the ambitious

question of market design with storage. We limit ourselves to a Cournot environment with

stochastic shocks that follow a Markov chain, and allow for capacity constraints; there is no

change in the mean demand. This environment features market power and strategic behaviour,

in departure to much of the literature on (other forms of) storage.

Even then, the analysis of such a simple problem is very demanding. To make progress,

we must confine ourselves to studying simple heuristics, which allows us to derive explicit

forms for the long-horizon payoffs of the storage unit. We are confident these payoffs are close

approximations. We uncover two competing forces that a storage operator must balance:

market power, which is quite standard, and the continuation risk, which is completely new.

That risk is the expected cost to be stuck either empty or full and being unable to either

buy or sell, and it is only relevant when storage has market power. Finally, the impact of

a capacity constraint on conventional generators has ambiguous effects, depending on how

exactly it affects aggregate supply. The full implications of these behaviours on market design

are yet to be understood.

There is still a tremendous amount of work to do to really understand the economics of
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storage. In this model there is no change in the mean demand over time. This is a central to

electricity markets but difficult to incorporate in a model of dynamic trading.
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A Appendix – for online publication

A.1 Proof of the Introductory example

According to (4) and (2), the storage operator buys k units under price p = (1 − a +

k)/(n + 1) and sells δk units under price p = (1 + a− δk)/(n + 1). The probability that the

storage unit observes the first positive shock after i periods is (1/2)i−1 · (1/2). Thus, the total

discounting of waiting for the positive shock after recharging is equal to

1

2
· β +

1

4
· β2 + · · ·+ 1

2i
· βi + · · · = β

2− β
.

Hence, entering the market is profitable for the storage operator if −B + β
2−β

A > 0.

Four possible deviations of the storage unit should be considered. All other deviations are

just compositions of those four.

• The unit is full but deviates by not selling under the positive shock. Then there may

be only loss comparing to the default strategy. Indeed, nothing changes on the market

except the future profits to be discounted by β.

• The unit is empty and deviates by not buying under the negative shock. Also, no gains

here.

• The unit is full and deviates by selling under the negative shock. In this situation, the

quantities supplied by the generators are q = (1− a)/(n+ 1). The resulting price after

the deviation is

p = 1− a− δk − n
1− a

n+ 1
=

1− a

n+ 1
− δk.

To make this deviation profitable, the storage operator must gain more than if it waits

for the positive shock and sells in that period:

(
1− a

n+ 1
− δk

)
δk >

β

2− β

1 + a− δk

n+ 1
δk,

which is impossible when B < β
2−β

A.
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• The unit is empty and deviates by buying under the positive shock. Here we have

q = (1+a)/(n+1), and the resulting price after the deviation is p = (1+a)/(n+1)+k.

The profits after selling the purchased energy are:

−
(
1 + a

n+ 1
+ k

)
k +

β

2− β

1 + a− δk

n+ 1
δk

= − k

n+ 1

((
1− β

2− β
δ

)
(1 + a) +

(
β

2− β
δ2 + n+ 1

)
k

)
< 0.

There are no gains from this deviation.

Ruling out deviations of the generators is simple. In each round, we have a static Cournot

equilibrium for all the participants. Thus, any change of the equilibrium quantity in round t

leads to decreasing the payoffs in that round and, thus, decreasing the overall payoffs. Indeed,

the stage-game Cournot equilibrium is an equilibrium also in the long-horizon game.

To find the expected payoff of the storage unit, let’s introduce value function Vt(i), i ∈

{1, 0}. Vt(i) is the total expected payoff of the unit from moment t if the current state is full

(i = 1) or empty (i = 0). We have a system of recursive equations:


Vt(1) =

1

2
· (A+ βVt+1(0)) +

1

2
· β · Vt+1(1),

Vt(0) =
1

2
· β · Vt+1(0) +

1

2
· (−B + β · Vt+1(1)) .

It can be rewritten in a matrix form

Vt = P + β ·Q · Vt+1, (27)

where

Vt =

Vt(1)

Vt(0)

 , P =
1

2

 A

−B

 , Q =
1

2

1 1

1 1

 .
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Note that Q2 = Q. For β < 1, we can find from (27) that

V0 = P +
t∑

i=1

βiQi · P + βt+1Qt+1 · Vt+1 =

= P +
β(1− βt)

1− β
·Q · P + βt+1 ·Q · Vt+1 −−−→

t→∞
P +

β

1− β
·Q · P =

1

4

2−β
1−β

A− β
1−β

B

β
1−β

A− 2−β
1−β

B

 .

(28)

The lower term is exactly Us.

To find the expected payoff of the generators, let’s introduce value function Wt(i), i ∈

{1, 0}. Wt(i) is the total expected payoff of a generator from moment t if the current state of

the storage unit is full (i = 1) or empty (i = 0). We have a system of recursive equations:


Wt(1) =

1

2
· (G10 + βWt+1(1)) +

1

2
· (G11 + β ·Wt+1(0)) ,

Wt(0) =
1

2
· (G00 + β ·Wt+1(1)) +

1

2
· (G01 + β ·Wt+1(0)) .

It can be rewritten in a matrix form

Wt = R + β ·Q ·Wt+1,

where

Wt =

Wt(1)

Wt(0)

 , R =
1

2

G10 +G11

G00 +G01

 , Q = Q2 =
1

2

1 1

1 1

 .

Using the same algebra as for V (t) earlier, we obtain

W0 −−−→
t→∞

R +
β

1− β
·Q ·R =

1
2
(G10 +G11) +

β
4(1−β)

(G10 +G11 +G00 +G01)

1
2
(G00 +G01) +

β
4(1−β)

(G10 +G11 +G00 +G01)

 .

The lower term is exactly Ug.
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To find cumulative consumers’ expected payments per period, notice first that each of four

states – a combination of a full/empty storage unit and a positive/negative shock – has the

same probability 1/4. Table 1 summarizes all the consumers’ payments under each of those

events.

shock \ storage empty full

negative
1− a+ k

n+ 1
·
(
n
1− a+ k

n+ 1
− k

)
1− a

n+ 1
· n1− a

n+ 1

positive
1 + a

n+ 1
· n1 + a

n+ 1

1 + a− k

n+ 1
·
(
n
1 + a− k

n+ 1
+ k

)
Table 1

Summing up all the cells with weight 1/4 for each, we get C1. ■

A.2 Proofs of the Propositions

Proof of Proposition 3. Since under proportional bids, we never reach upper limit k and never

reach lower limit 0 again after starting there, the system of equations (10) takes the following

form: 

V (0) =
1

2− β

(
−1− a+ rk

n+ 1
· rk + βV (rk)

)
,

V (c) =
1

2

(
−1− a+ r(k − c)

n+ 1
· r(k − c) + βV (c+ r(k − c))

)
+
1

2

(
1 + a− δrc

n+ 1
· δrc+ βV ((1− r)c)

)
.

We need to find V (0) = UP
s . Let’s enumerate all c, b(c), and a(c) in order of their

appearance when we expand our equation for V (0). Namely, in the first period we have

V (0) =
1

2
βV (0) +

1

2

(
−1− a+ rk

n+ 1
· rk + βV (rk)

)
= −1

2
B(rk) +

β

2
(V (0) + V (rk)) ,
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so we define c0 = 0, b0 = r(k − c0) = rk, c1 = c0 + b0 = rk. In the second round, we get

V (0) = −1

2
B(rk) +

β

2

(
1

2
βV (0) +

1

2
(−B(rk) + βV (rk))

+
1

2
(−B(r(k − rk)) + βV (rk + r(k − rk))) +

1

2
(A(r · rk) + βV ((1− r)rk))

)
= −1

2
B(rk) +

β

4

(
−B(rk)−B(r(1− r)k) + A(r2k)

)
+

β2

4

(
V (0) + V (rk) + V (r(2− r)k) + V (r(1− r)k)

)
.

Thus,

b1 = r(k − c1) = r(1− r)k, a1 = rc1 = r2k,

c2 = c1 + b1 = r(2− r)k, c3 = c1 − a1 = r(1− r)k.

In the third round, we get

V (0) = −1

2
B(b0) +

β

4

(
−B(b0)−B(b1) + A(a1)

)
+

β2

8

(
−B(b0)−B(b1)−B(b2)−B(b3) + A(a1) + A(a2) + A(a3)

)
+

β3

8

7∑
i=0

V (ci),

where

b2 = r(k − c2) = r(1− 2r − r2)k, b3 = r(k − c3) = r(1− r + r2)k,

a2 = rc2 = r2(2− r)k, a3 = rc3 = r2(1− r)k,

c4 = c2 + b2 = r(3− 3r − r2)k, c5 = c3 + b3 = r(2− 2r + r2)k,

c6 = c2 − a2 = r(1− r)(2− r)k, c7 = c3 − a3 = r(1− r)2k.
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Finally, in round t,

V (0) = −1

2
B(b0) +

β

4

(
−B(b0)−B(b1) + A(a1)

)
+

β2

8

(
−

3∑
i=0

B(bi) +
3∑

i=1

A(ai)

)
+ · · ·

+
βt−1

2t

(
−

2t−1−1∑
i=0

B(bi) +
2t−1−1∑
i=1

A(ai)

)
+

βt

2t

2t−1∑
i=0

V (ci),

where bi, ai, and ci can be found recursively. Continuing this process infinitely and noticing

that

βt

2t

2t−1∑
i=0

V (ci) ⩽ βtV (max
i

ci) −−−→
t→∞

0,

we obtain:

V (0) −−−→
t→∞

−1

2
B(b0) +

1

2

∞∑
j=1

(
β

2

)j
−

2j−1∑
i=0

B(bi) +
2j−1∑
i=1

A(ai)

 . (29)

Let

G(t) =
2t−1∑
i=0

ci, H(t) =
2t−1∑
i=0

(
ci
)2

.

We can get a recursive equation for G(t):

G(t) =
2t−1−1∑
i=0

(ci + bi) +
2t−1−1∑
i=1

(ci − ai)

=
2t−1−1∑
i=0

(ci + r(k − ci)) +
2t−1−1∑
i=0

(ci − rci) = rk2t−1 + 2(1− r)G(t− 1),

which implies

G(t) = rk2t−1 + 2(1− r)
(
rk2t−2 + 2(1− r)G(t− 2)

)
= . . .

= rk
t−1∑
i=0

2i(1− r)i2t−1−i + 2t(1− r)tG(0) = k2t−1
(
1− (1− r)t

)
.

(30)
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The same technique works for H(t):

H(t) =
2t−1−1∑
i=0

(ci + bi)2 +
2t−1−1∑
i=1

(ci − ai)2 =
2t−1−1∑
i=0

(rk + (1− r)ci)2 +
2t−1−1∑
i=0

((1− r)ci)2

= r2k22t−1 + 2r(1− r)kG(t− 1) + (1− r)2H(t− 1) + (1− r)2H(t− 1)

= rk22t−1
(
1− (1− r)t

)
+ 2(1− r)2H(t− 1),

and

H(t) = rk22t−1
(
1− (1− r)t

)
+ 2(1− r)2

(
rk22t−2

(
1− (1− r)t−1

)
+ 2(1− r)2H(t− 2)

)
= . . . = rk2

t−1∑
i=0

2i(1− r)2i2t−i−1
(
1− (1− r)t−i

)
+ 2t(1− r)2tH(0)

= k22t−1 (1− (1− r)t) (1− (1− r)t+1)

2− r
.

(31)

From (30), we can find expressions for sums of bi and ai:

2t−1∑
i=0

bi =
2t−1∑
i=0

r(k − ci) = rk2t − rG(t) = rk2t−1
(
1 + (1− r)t

)
,

2t−1∑
i=0

ai =
2t−1∑
i=0

rci = rG(t) = rk2t−1
(
1− (1− r)t

)
.

From (30) and (31), we can find expressions for sums of squares of bi and ai:

2t−1∑
i=0

(
bi
)2

=
2t−1∑
i=0

r2(k − ci)2

= r2k22t − 2r2kG(t) + r2H(t) = r2k22t−1

(
1 + (1− r)2t+1

2− r
+ (1− r)t

)
,

2t−1∑
i=0

(
ai
)2

=
2t−1∑
i=0

r2
(
ci
)2

= r2H(t) = r2k22t−1

(
1 + (1− r)2t+1

2− r
− (1− r)t

)
.

Now we are ready to calculate sums of B(b(i)) and A(a(i)) and get the final formula for
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V (0). From (29), we have

V (0) = −1

2
B(rk) +

1

2

∞∑
j=1

(
β

2

)j
−

2j−1∑
i=0

1− a+ bi

n+ 1
bi +

2j−1∑
i=1

1 + a− δai

n+ 1
δai


= −1

2

1− a+ rk

n+ 1
rk +

1

2(n+ 1)

∞∑
j=1

(
β

2

)j
(
−(1− a)rk2j−1

(
1 + (1− r)j

)
− r2k22j−1

(
1 + (1− r)2j+1

2− r
+ (1− r)j

)
+ (1 + a)δrk2j−1

(
1− (1− r)j

)
− δ2r2k22j−1

(
1 + (1− r)2j+1

2− r
− (1− r)j

))

=
rk

4(n+ 1)(1− β)(1− (1− r)β)

(
rβ ((1 + a)δ − (1− a))− 2(1− β)(1− a+ rk)

− rk
βr2(1 + δ2)

1− (1− r)2β

)
.

The last expression is exactly formula (11).

Proof of Proposition 4. The system of equations (10) takes the following form:



Vt

(
ik

m

)
=

1

2

(
A

(
k

m

)
+ βVt+1

(
(i− 1)k

m

)
−B

(
k

m

)
+ βVt+1

(
(i+ 1)k

m

))
,

Vt(0) =
1

2

(
βVt+1(0)−B

(
k

m

)
+ βVt+1

(
k

m

))
,

Vt(k) =
1

2

(
A

(
k

m

)
+ βVt+1

(
(m− 1)k

m

)
+ βVt+1(k)

) (32)

for all 1 ⩽ i ⩽ m− 1. We are interested in coefficients cit in front of value functions Vt(ik/m)

for each particular t ⩾ 0 and 0 ⩽ i ⩽ m, such that

V0(0) = Ft−1

(
β,A

(
k

m

)
, B

(
k

m

))
+

(
β

2

)t m∑
i=0

citVt

(
ik

m

)
. (33)

Note that
∑

i c
i
t = 2t for any t.

In each period t, the storage unit buys energy with probability 1/2. This cannot be done

only if the unit has reached its full capacity. Also, in period t the storage unit sells energy

with probability 1/2 if it’s not empty. Thus, the overall expected earnings of storage up to
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period t can be described by the following expression:

Ft =
t∑

i=0

(
β

2

)i

· 1
2
·
(
(2i − c0i )A

(
k

m

)
− (2i − cmi )B

(
k

m

))
.

Indeed, c0t/2
t and cmt /2

t are the probabilities of the storage to be correspondingly empty or

full at t, according to (33).

Since
∑

i c
i
t = 2t, β < 1, and Vt is a nondecreasing function, the last term in (33) goes to

zero if t → ∞:

(
β

2

)t m∑
i=0

citVt

(
ik

m

)
⩽

(
β

2

)t m∑
i=0

citVt(k) = βtVt(k) −−−→
t→∞

0.

Then the expected payoff function takes the following form:

UC
s = V0(0) =

∞∑
i=0

(
β

2

)i

· 1
2
·
(
(2i − c0i )A

(
k

m

)
− (2i − cmi )B

(
k

m

))
. (34)

We need to find c0i and cmi . From (32), we can see that

c0t+1 = c0t + c1t , cit+1 = ci−1
t + ci+1

t (1 ⩽ i ⩽ m− 1), cmt+1 = cm−1
t + cmt .

Thus, we have a modified version of Pascal’s triangle. Let’s see if we can express cit in terms

of binomial coefficients Ck
n = n!/(k!(n− k)!). The two main properties of Ck

n we are going to

use are

Ck
n = Cn−k

n , Ck
n + Ck+1

n = Ck+1
n+1.

We start with c00 = 1 = C0
0 (and all other ci0 = 0, i ⩾ 1). In period 1, we have c11 =

c01 = 1 = C0
1 with all other ci1 equal to zero. Period 2 delivers c22 = c12 = 1 = C0

2 and

c02 = c11 + c10 = C0
1 + C0

1 = C1
1 + C0

1 = C1
2 , with all remaining ci1 equal to zero. In period 3,

we have c33 = c23 = 1 = C0
3 , c

1
3 = c22 + c02 = C0

2 + C1
2 = C1

3 , and c03 = c12 + c02 = C0
2 + C1

2 = C1
3 ,

with all other ci1 equal to zero. We get rid of all the zeroes by period m with cim = C
⌊(m−i)/2⌋
m
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(here, ⌊x⌋ is the largest integer which is less than or equal to x). This process is summarized

in Table 2.

st
a
te

o
f
ch

a
rg

e
i

m 0 0 . . . . . . 0 0 C0
m

m
−
1

0 0 . . . . . . 0 C0
m−1 C0

m

m
−
2

0 0 . . . . . . C0
m−2 C0

m−1 C1
m

...
...

...
...

2 0 0 C0
2 C0

3 C1
4 . . . C

⌊(m−4)/2⌋
m−2 C

⌊(m−3)/2⌋
m−1 C

⌊(m−2)/2⌋
m

1 0 C0
1 C0

2 C1
3 C1

4 . . . C
⌊(m−3)/2⌋
m−2 C

⌊(m−2)/2⌋
m−1 C

⌊(m−1)/2⌋
m

0 C0
0 C0

1 C1
2 C1

3 C2
4 . . . C

⌊(m−2)/2⌋
m−2 C

⌊(m−1)/2⌋
m−1 C

⌊m/2⌋
m

0 1 2 3 4 . . . m−2 m−1 m

cit time t

Table 2: The first m+1 steps of evolving cit

However, after period m we cannot go up anymore. Instead, all the extra mass we accu-

mulate goes down step by step. Namely, in period m+1 we still have cim+1 = C
⌊(m+1−i)/2⌋
m+1 for

all 0 ⩽ i ⩽ m− 1, but for i = m we now have cmm+1 = C0
m+1 +C0

m+1. In period m+ 2, we still

have cim+2 = C
⌊(m+2−i)/2⌋
m+2 , but only for 0 ⩽ i ⩽ m − 2. For i = m and i = m − 1, we have

cmm+2 = cm−1
m+2 = C1

m+2 + C0
m+2, etc. Finally, in period 2m+ 1, we have

ci2m+1 = C
⌊ 2m+1−i

2
⌋

2m+1 + C
⌊ i
2
⌋

2m+1 0 ⩽ i ⩽ m.

See Table 3 for the entire picture.
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m C0
m C0

m+1+C0
m+1 C1

m+2+C0
m+2 . . . C

⌊m−1
2

⌋
2m−1 +C

⌊m−2
2

⌋
2m−1 C

⌊m
2
⌋

2m +C
⌊m−1

2
⌋

2m C
⌊m+1

2
⌋

2m+1 +C
⌊m

2
⌋

2m+1
m

−
1

C0
m C1

m C1
m+2+C0

m+2 . . . C
⌊m

2
⌋

2m−1+C
⌊m−3

2
⌋

2m−1 C
⌊m+1

2
⌋

2m +C
⌊m−2

2
⌋

2m C
⌊m+2

2
⌋

2m+1 +C
⌊m−1

2
⌋

2m+1

m
−
2

C1
m C1

m+1 C2
m+2 . . . C

⌊m+1
2

⌋
2m−1 +C

⌊m−4
2

⌋
2m−1 C

⌊m+2
2

⌋
2m +C

⌊m−3
2

⌋
2m C

⌊m+3
2

⌋
2m+1 +C

⌊m−2
2

⌋
2m+1

...
...

...
...

2 C
⌊m−2

2
⌋

m C
⌊m−1

2
⌋

m+1 C
⌊m

2
⌋

m+2 . . . Cm−2
2m−1+C0

2m−1 Cm−1
2m +C0

2m Cm−1
2m+1+C1

2m+1

1 C
⌊m−1

2
⌋

m C
⌊m

2
⌋

m+1 C
⌊m+1

2
⌋

m+2 . . . Cm−1
2m−1 Cm−1

2m +C0
2m Cm

2m+1+C0
2m+1

0 C
⌊m

2
⌋

m C
⌊m+1

2
⌋

m+1 C
⌊m+2

2
⌋

m+2 . . . Cm−1
2m−1 Cm

2m Cm
2m+1+C0

2m+1

i

/t m m+1 m+2 . . . 2m−1 2m 2m+1

Table 3: The second m+1 steps of evolving cit

Now the excess mass reached the lower boundary again. Since we cannot go down anymore,

this mass has to spread up again and add one more binomial coefficient as a summand to all

cit starting from t = 2m + 2 and until t = 3m + 2. This process continues infinitely. We can
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now derive c0i and cmi :

c0i =



C
⌊ i
2
⌋

i if 0 ⩽ i ⩽ 2m,

C
⌊ i
2
⌋

i + C
⌊ i−2m−1

2
⌋

i if i = 2m+ 1,

C
⌊ i
2
⌋

i + C
⌊ i−2m−1

2
⌋

i + C
⌊ i−2m−2

2
⌋

i if 2m+ 2 ⩽ i ⩽ 2m+ 2 + 2m,

C
⌊ i
2
⌋

i + C
⌊ i−2m−1

2
⌋

i + C
⌊ i−2m−2

2
⌋

i + C
⌊ i−2m−1−2(m+1)

2
⌋

i if i = 2(m+ 1) + 2m+ 1,

C
⌊ i
2
⌋

i + C
⌊ i−2m−1

2
⌋

i + C
⌊ i−2m−2

2
⌋

i + C
⌊ i−2m−1−2(m+1)

2
⌋

i + C
⌊ i−4(m+1)−2m

2
⌋

i

if 4(m+ 1) ⩽ i ⩽ 4(m+ 1) + 2m,

· · ·

cmi =



0 if 0 ⩽ i ⩽ m− 1,

C
⌊ i−m

2
⌋

i if i = m,

C
⌊ i−m

2
⌋

i + C
⌊ i−m−1

2
⌋

i if m+ 1 ⩽ i ⩽ m+ 1 + 2m,

C
⌊ i−m

2
⌋

i + C
⌊ i−m−1

2
⌋

i + C
⌊ i−m−1−2m−1

2
⌋

i if i = m+ 1 + 2m+ 1,

C
⌊ i−m

2
⌋

i + C
⌊ i−m−1

2
⌋

i + C
⌊ i−m−1−2m−1

2
⌋

i + C
⌊ i−3(m+1)

2
⌋

i if 3(m+ 1) ⩽ i ⩽ 3(m+ 1) + 2m,

· · ·

The coefficient in front of A(k/m) in (34) takes the following form:

1

2
·

∞∑
i=0

(
β

2

)i (
2i − c0i

)
=

1

2
·

∞∑
i=0

βi −
∞∑
i=0

βi

2i+1
C

⌊ i
2
⌋

i −
∞∑

i=2m+1

βi

2i+1
C

⌊ i−2m−1
2

⌋
i −

−
∞∑

i=2m+2

βi

2i+1
C

⌊ i−2m−2
2

⌋
i −

∞∑
i=4m+3

βi

2i+1
C

⌊ i−4m−3
2

⌋
i − . . . =

1

2(1− β)
−

∞∑
i=0

βi

2i+1
C

⌊ i
2
⌋

i −

−
∞∑
j=0

 ∞∑
i=2m+1+2j(m+1)

βi

2i+1
C

⌊ i−2m−1−2j(m+1)
2

⌋
i +

∞∑
i=2m+2+2j(m+1)

βi

2i+1
C

⌊ i−2m−2−2j(m+1)
2

⌋
i

 .
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We can rewrite the second term:

∞∑
i=0

βi

2i+1
C

⌊ i
2
⌋

i =
∞∑
i=0

β2i

22i+1
Ci

2i +
∞∑
i=0

β2i+1

22i+2
Ci

2i+1 =
1

2
·

∞∑
i=0

(
β

2

)2i(
Ci

2i +
β

2
Ci

2i+1

)
.

The term in parenthesis can also be simplified by considering even and odd indices separately:

∞∑
i=2m+1+2j(m+1)

βi

2i+1
C

⌊ i−2m−1−2j(m+1)
2

⌋
i +

∞∑
i=2m+2+2j(m+1)

βi

2i+1
C

⌊ i−2m−2−2j(m+1)
2

⌋
i =

=
β2(j+1)(m+1)−1

22(j+1)(m+1)
+

∞∑
i=2(j+1)(m+1)

βi

2i+1

(
C

⌊ i+1−2(j+1)(m+1)
2

⌋
i + C

⌊ i−2(j+1)(m+1)
2

⌋
i

)
=

=
β2(j+1)(m+1)−1

22(j+1)(m+1)
+

∞∑
i=0

β2(j+1)(m+1)+2i

22(j+1)(m+1)+2i
Ci

2(j+1)(m+1)+2i+

+
∞∑
i=0

β2(j+1)(m+1)+2i+1

22(j+1)(m+1)+2i+2
Ci+1

2(j+1)(m+1)+2i+2 =
1 + β

β

∞∑
i=0

(
β

2

)2(j+1)(m+1)+2i

Ci
2(j+1)(m+1)+2i.

The coefficient in front of B(k/m) in (34) takes the following form:

−1

2
·

∞∑
i=0

(
β

2

)i (
2i − cmi

)
= −1

2
·

∞∑
i=0

βi +
∞∑

i=m

βi

2i+1
C

⌊ i−m
2

⌋
i +

∞∑
i=m+1

βi

2i+1
C

⌊ i−m−1
2

⌋
i

+
∞∑

i=3m+2

βi

2i+1
C

⌊ i−3m−2
2

⌋
i +

∞∑
i=3m+3

βi

2i+1
C

⌊ i−3m−3
2

⌋
i + . . .

= − 1

2(1− β)
+

∞∑
j=0

 ∞∑
i=m+2j(m+1)

βi

2i+1
C

⌊ i−m−2j(m+1)
2

⌋
i

+
∞∑

i=m+1+2j(m+1)

βi

2i+1
C

⌊ i−m−2j(m+1)−1
2

⌋
i

 .

The term in parenthesis can be simplified the same way as for A(k/m):

∞∑
i=m+2j(m+1)

βi

2i+1
C

⌊ i−m−2j(m+1)
2

⌋
i +

∞∑
i=m+1+2j(m+1)

βi

2i+1
C

⌊ i−m−2j(m+1)−1
2

⌋
i =

=
1 + β

β

∞∑
i=0

(
β

2

)(2j+1)(m+1)+2i

Ci
(2j+1)(m+1)+2i.

Summing everything up, we obtain the overall expected profit of the storage unit from
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(34):

UC
s =

A(k/m)−B(k/m)

2(1− β)
+

1 + β

β

(
B

(
k

m

) ∞∑
j=0

(
β

2

)(m+1)(2j+1) ∞∑
i=0

(
β

2

)2i

Ci
2i+(m+1)(2j+1)−

−A

(
k

m

) ∞∑
j=1

(
β

2

)2(m+1)j ∞∑
i=0

(
β

2

)2i

Ci
2i+2(m+1)j

)
− A(k/m)

2

∞∑
i=0

(
β

2

)2i(
Ci

2i +
β

2
Ci

2i+1

)
.

Using formula
∞∑
i=0

βiCi
2i+r =

2r√
1− 4β

(
1 +

√
1− 4β

)r
from Graham et al. (1994) (p. 203) and introducing new discounting coefficient

β̃ =
β

1 +
√
1− β2

,

we finally get

UC
s =

1

2(1− β)

(
−B

(
k

m

)
+ β̃A

(
k

m

)
−

− 2
√

1− β2

β

β̃
m+1

1− β̃
2(m+1)

(
−B

(
k

m

)
+ β̃

m+1
A

(
k

m

)))
. (35)

Proof of Proposition 5. Let’s prove formula 14 first. In this case of four possible states of

charge, the system of equations (10) takes the following form:



Vt(0) =
1

2
(βVt+1(0)−B(X) + βVt+1(X)) ,

Vt(X) =
1

2
(A(X) + βVt+1(0)−B(k −X) + βVt+1(k)) ,

Vt(k −X) =
1

2
(A(k −X) + βVt+1(0)−B(X) + βVt+1(k)) ,

Vt(k) =
1

2
(A(X) + βVt+1(k −X) + βVt+1(k)) .

(36)
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It can be rewritten in a matrix form

Vt = P + β ·Q · Vt+1, (37)

where

Vt =



Vt(0)

Vt(X)

Vt(k −X)

Vt(k)


, P =



−B(X)/2

A(X)/2−B(k −X)/2

A(k −X)/2−B(X)/2

A(X)/2


, Q =



1/2 1/2 0 0

1/2 0 0 1/2

1/2 0 0 1/2

0 0 1/2 1/2


.

To calculate power t of matrix Q, we find the Jordan decomposition Q = T · J · T−1 of Q.

Here,

J =



1 0 0 0

0 −1/2 0 0

0 0 1/2 0

0 0 0 0


, T =



1 1 −1 −1

1 −2 0 1

1 −2 0 −1

1 1 1 1


,

so Qt = T · J t · T−1.

For β < 1, we can find from (37) that

V0 =
t∑

i=0

βiQi · P + βt+1Qt+1 · Vt+1 −−−→
t→∞

∞∑
i=0

βiQi · P =

= P + T ·



β
1−β

0 0 0

0 − β
2+β

0 0

0 0 β
2−β

0

0 0 0 0


· T−1 · P,
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from where we finally get UX
s = V0(0):

UX
s = −1

2

(
B(X) +

β

2− β
B(k −X)

)
+

+
β

4(1− β)

(
A(X)−B(X) +

β2

4− β2
(A(k −X)−B(k −X))

)
,

which is exactly (14).

Formulae (15) – (17) can be proven exactly the same way using expression (37). For case

m = 2 (1/3 < X < 1/2), we have

V =



Vt(0)

Vt(X)

Vt(2X)

Vt(k − 2X)

Vt(k −X)

Vt(k)


, P =



−B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(k−2X)
2

A(k−2X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2


, Q =



1/2 1/2 0 0 0 0

1/2 0 1/2 0 0 0

0 1/2 0 0 0 1/2

1/2 0 0 0 1/2 0

0 0 0 1/2 0 1/2

0 0 0 0 1/2 1/2


.

Case m = 3 (1/4 < X < 1/3) gives us

V =



Vt(0)

Vt(X)

Vt(2X)

Vt(3X)

Vt(k − 3X)

Vt(k − 2X)

Vt(k −X)

Vt(k)



, P =



−B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(k−3X)
2

A(k−3X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2



, Q =



1
2

1
2

0 0 0 0 0 0

1
2

0 1
2

0 0 0 0 0

0 1
2

0 1
2

0 0 0 0

0 0 1
2

0 0 0 0 1
2

1
2

0 0 0 0 1
2

0 0

0 0 0 0 1
2

0 1
2

0

0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 1
2

1
2



.

56



Finally, in case m = 4 (1/5 < X < 1/4), we have

V =



Vt(0)

Vt(X)

Vt(2X)

Vt(3X)

Vt(4X)

Vt(k − 4X)

Vt(k − 3X)

Vt(k − 2X)

Vt(k −X)

Vt(k)



, P =



−B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(k−4X)
2

A(k−4X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2

− B(X)
2

A(X)
2



, Q =



1
2

1
2

0 0 0 0 0 0 0 0

1
2

0 1
2

0 0 0 0 0 0 0

0 1
2

0 1
2

0 0 0 0 0 0

0 0 1
2

0 1
2

0 0 0 0 0

0 0 0 1
2

0 0 0 0 0 1
2

1
2

0 0 0 0 0 1
2

0 0 0

0 0 0 0 0 1
2

0 1
2

0 0

0 0 0 0 0 0 1
2

0 1
2

0

0 0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 0 0 1
2

1
2



.

For smaller X (m ⩾ 5), we observe polynomials of higher degrees when calculating eigenvalues

of matrix Q, and matrix decomposition turns out to be problematic. Nevertheless, the problem

may be solved computationally for any given m.

Proof of Proposition 6. Let’s start with the possible deviation of storage. If the storage unit

decides to enter the market and make a purchase under monopolistic quantities set by gen-

erators, it has to sell energy under Cournot quantities. The expected storage payoffs during

one round-trip cycle are

−
(
1− a

2
+ k

)
k +

β

2− β

1 + a− δk

n+ 1
δk.

Storage doesn’t gain any profits if

β

2− β
⩽

(n+ 1)
(
1−a
2

+ k
)

δ (1 + a− δk)
,

which is equivalent to the right side of (18). Hence, as long as generators can maintain their

collusive equilibrium, the storage unit should not purchase any energy and so never operates.

Let’s analyze the possible deviations of a generator. First, we consider the case when
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inequality (19) doesn’t hold. It means that storage is not interested in entering the market

with Cournot bids. A generator deviates from its monopolistic quantity when the shock is

positive: ε = a. Let the deviation be γ. Then the generator’s profit after deviating is

(
1 + a

2n
+ γ

)(
1 + a

2
− γ

)
+

β

1− β

(
1

2

(
1 + a

n+ 1

)2

+
1

2

(
1− a

n+ 1

)2
)
.

A generator increases its quantity by γ, which results in the price going down by γ also.

Because of that, all other generators switch from monopolistic quantities to Cournot quantities,

which results in the discounted expected payoff over infinite horizon expressed by the second

item. This move is unprofitable if

(
1 + a

2n
+ γ

)(
1 + a

2
− γ

)
+

β

1− β

(
1

2

(
1 + a

n+ 1

)2

+
1

2

(
1− a

n+ 1

)2
)

⩽

⩽
1 + a

2n

1 + a

2
+

β

1− β

(
1

2

(1 + a)2

4n
+

1

2

(1− a)2

4n

)
,

which can be simplified to

n− 1

n
(1 + a)γ − 2γ2 ⩽

β

1− β

(1 + a2)(n− 1)2

2n(n+ 1)2
.

The maximum on the left side can be achieved when γmax = (1 + a)(n − 1)/(4n). Then we

obtain

(1 + a)2

4n
⩽

β

1− β

(1 + a2)

(n+ 1)2
, (38)

which is equivalent to the left side of (18).

Now assume that a generator deviates from its monopolistic quantity when the shock is

negative: ε = −a. This move is unprofitable if

(
1− a

2n
+ γ

)(
1− a

2
− γ

)
+

β

1− β

(
1

2

(
1 + a

n+ 1

)2

+
1

2

(
1− a

n+ 1

)2
)

⩽

⩽
1− a

2n

1− a

2
+

β

1− β

(
1

2

(1 + a)2

4n
+

1

2

(1− a)2

4n

)
,
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which can be simplified to

(1− a)2

4n
⩽

β

1− β

1 + a2

(n+ 1)2
.

This inequality is weaker than (38).

Now consider the case when inequality (19) holds. It means that storage finds profitable

to enter the market immediately after any of the generators has deviated. Since the payoffs

of a deviating generator with the participating storage unit are lower than the ones without

it, the inequality (38) is sufficient to make this deviation unprofitable.

Finally, we should also prove that our pool of equilibrium strategies forms an SPNE even

at information sets that are off the equilibrium path. Namely, generators must not want to

deviate even if storage enters the market. Indeed, if the shock is positive, all the generators

set static Cournot quantities, and it becomes unprofitable to deviate. If the shock is negative,

any deviation from monopolistic quantities implies punishment that was already considered

earlier. Hence, all the possible deviations of a generator are unprofitable, and the proposed

strategies of all the players form Nash equilibrium.

To calculate the expected payoff of a generator, we obtain a recursive equation for gener-

ator’s payoff Zt starting from period t:

Zt =
1

2
G01 +

1

2
G10 + βZt+1.

We can easily find Z0 = U0
g from this equation.

Since positive and negative shocks are equally likely, the cumulative consumers’ expected

payments per period are

C0 =
1

2
·
(
1 + a

2

)2

+
1

2
·
(
1− a

2

)2

=
1 + a2

4
.

Proof of Proposition 7. To justify inequalities (21), (22), and (23), we need to find the ex-

pected payoffs of the storage unit. Let the value function V
{−,+}
t (i), i ∈ {0, k/2, k} be the
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total expected payoff of the storage operator from t on if the current state is empty (i = 0),

half-full (i = k/2), or full (i = k) and the current shock is either negative (−) or positive (+).

We have a system of recursive equations:



V −
t (k) = y · βV −

t+1(k) + (1− y) ·
(
A

(
k

2

)
+ βV +

t+1

(
k

2

))
,

V −
t

(
k
2

)
= y ·

(
−B

(
k

2

)
+ βV −

t+1(k)

)
+ (1− y) ·

(
A

(
k

2

)
+ βV +

t+1(0)

)
,

V +
t

(
k
2

)
= (1− x) ·

(
−B

(
k

2

)
+ βV −

t+1(k)

)
+ x ·

(
A

(
k

2

)
+ βV +

t+1(0)

)
,

V +
t (0) = (1− x) ·

(
−B + βV −

t+1

(
k

2

))
+ x · βV +

t+1(0).

for any integer t ⩾ 0. It can be rewritten in a matrix form

Vt = P2 + β ·Q2 · Vt+1, (39)

where

Vt =



V −
t (k)

V −
t (k/2)

V +
t (k/2)

V +
t (0)


, P2 =



(1− y)A(k/2)

(1− y)A(k/2)− yB(k/2)

xA(k/2)− (1− x)B(k/2)

−(1− x)B(k/2)


, Q2 =



y 0 1− y 0

y 0 0 1− y

1− x 0 0 x

0 1− x 0 x


.

To calculate power t of matrix Q2, we find the Jordan decomposition Q2 = T · J · T−1 of
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Q2. Here,

J =



1 0 0 0

0
√

(1− x)(1− y) 0 0

0 0 −
√

(1− x)(1− y) 0

0 0 0 x+ y − 1


,

T =



1 −x
√
1−y

y
√
1−x

x
√
1−y

y
√
1−x

− 1−y
1−x

1

√
(1−x)(1−y)−x

1−x
−
√

(1−x)(1−y)+x

1−x
− 1−y

1−x

1 x√
(1−x)(1−y)

− x
y

− x√
(1−x)(1−y)

− x
y

1

1 1 1 1


,

so Qt
2 = T · J t · T−1.

For β < 1, we can find from (39) that

V0 =
t∑

i=0

βiQi
2 · P2 + βt+1Qt+1

2 · Vt+1 −−−→
t→∞

∞∑
i=0

βiQi
2 · P2 =

= T ·



1
1−β

0 0 0

0 1

1−β
√

(1−x)(1−y)
0 0

0 0 1

1+β
√

(1−x)(1−y)
0

0 0 0 1
1+β(1−x−y)


· T−1 · P2 =

=
1

(1− β)(1− βd) (1− β2(1− x)(1− y))
×

×



(1− y)

(
−β(1− x)(1 + β2d)B

(
k

2

)
+
(
1− (1− y + xd)β2

)
A

(
k

2

))
−
(
(1− βy)(y − βd) + β3(1− x)(1− y)d

)
B

(
k

2

)
+ (1− y)(1− βx)(1 + β2d)A

(
k

2

)
−(1− x)(1− βy)(1 + β2d)B

(
k

2

)
+
(
(1− βx)(x− βd) + β3(1− x)(1− y)d

)
A

(
k

2

)
(1− x)

(
−
(
1− (1− x+ yd)β2

)
B

(
k

2

)
+ β(1− y)(1 + β2d)A

(
k

2

))


.
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from where we finally get U2
s = V +

0 (0):

U2
s =

1− x

(1− β)(1− βd)

(
−B

(
k

2

)
+ β(1− y)A

(
k

2

)
+ β2y

yB
(
k
2

)
+ βx(1− y)A

(
k
2

)
1− β2(1− x)(1− y)

)
.

Storage operates in this market only if U2
s > 0, which is exactly inequality (22).

For Condition 18, equation (39) reads

Vt = P3 + β ·Q3 · Vt+1,

where

Vt =



V −
t (k)

V −
t (2k/3)

V +
t (2k/3)

V −
t (k/3)

V +
t (k/3)

V +
t (0)


, P3 =



(1− y)A(k/2)

(1− y)A(k/2)− yB(k/2)

(1− y)A(k/2)− yB(k/2)

xA(k/2)− (1− x)B(k/2)

xA(k/2)− (1− x)B(k/2)

−(1− x)B(k/2)


,

Q3 =



y 0 0 1− y 0 0

y 0 0 0 1− y 0

0 y 0 0 0 1− y

1− x 0 0 0 x 0

0 1− x 0 0 0 x

0 0 1− x 0 0 x


.

The six eigenvalues of matrix Q3 that compose the diagonal of the corresponding Jordan

matrix J are

λ1 = 1, λ2 = x+ y − 1, λ3,4,5,6 = ±
√
(1− x)(1− y)±

√
xy(1− x)(1− y).
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Following the same argumentation as in case of k/2, we get

V +
0 (0) =

1− x

(1− β)(1− βd)

[
−B

(
k

3

)
+ β(1− y)A

(
k

3

)

+β3y
y2B

(
k
3

)
+ x(1− y) (1 + β2d)A

(
k
3

)
(1− β2(1− x)(1− y))2 − β4xy(1− x)(1− y)

]
.

Inequality V +
0 (0) = U3

s > 0 is exactly (23).

Four possible deviations of the storage unit should be considered. All other deviations are

just compositions of those four.

• A storage unit that is not empty deviates by not selling under the positive shock. Then

there may be only loss comparing to the default strategy. Indeed, nothing changes on

the market except the future profits to be discounted by β.

• A storage unit that is not full deviates by not buying under the negative shock. Also,

no gains here.

• A full storage unit deviates by selling under the negative shock. In this situation, the

quantities supplied by the generators are q = (1− a)/(n+ 1). The resulting price after

the deviation are

p = 1− a− δ
k

m
− n

1− a

n+ 1
=

1− a

n+ 1
− δ

k

m
.

To make this deviation profitable, the storage operator must gain more than if it waits

for the positive shock and sells in that period, but this contradicts (22) or (23).

• The nonfull storage unit deviates by buying under the positive shock. Here we have

q = (1+a)/(n+1), and the resulting price after the deviation is p = (1+a)/(n+1)+k/m.

It is easy to verify that the corresponding payoff is strictly negative.

Next we must rule out possible deviations of the generators. In each round, we have a static

Cournot equilibrium for all the participants. Any change of the equilibrium quantity in round

t leads to decreasing the payoffs in that round and, thus, decreasing the overall payoffs.
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A.3 Optimal Bid Values

For each bunch of parameter values, we can find the optimal proportion ropt and, hence,

the optimal initial bid roptk for the case of proportional bids. Also, we can find the optimal

constant bid X. We stay with the parameter values used in our examples in the main text

with n = 2, β = δ = 0.95. Table 4 presents the results.

Proportional bids, a = 0.6 Proportional bids, a = 0.2

k 0.25 0.45 0.65 0.85 1.05 0.1 0.15 0.2 0.25 0.3

ropt 0.91 0.68 0.543 0.451 0.385 0.795 0.635 0.526 0.447 0.385

roptk 0.228 0.306 0.353 0.384 0.404 0.08 0.095 0.105 0.112 0.115

Constant bids, a = 0.6 Constant bids, a = 0.2

k 0.25 0.45 0.65 0.85 1.05 0.1 0.15 0.2 0.25 0.3

X 0.21 0.259 0.253 0.248 0.299 0.068 0.066 0.074 0.069 –

Table 4

Some intuitive conclusions we can derive from this table:

• Bids decrease along with the shock in both cases;

• The first proportional bids are always higher than constant bids. This owes to more

flexibility towards the boundaries – the asymptotic behavior of the linear heuristic.

• The initial proportional bids tend to increase with k, but slowly. It is not the case for

constant bids because the continuation risk is more salient under this heurisitc, and so

kicks in sooner. Indeed, constant bids increase as long as a number of steps (parameter

m from chapter 4.1.4) is the same and decrease with the next shift.
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