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Abstract

We study a game with a finite number of incumbent sellers and a new agent that
is storage; storage must buy to sell. The immediate, but not exclusive, application is
electricity markets. We construct an equilibrium in which the incumbents cooperate
to prevent storage from operating, even absent entry costs. The producers achieve
cooperation through the threat of Nash reversion and preempt operation of the storage
unit with the threat to cycle between high purchase prices and low selling prices. Because
two kinds of deviations must be deterred, the equilibrium requires a two-sided condition
on the discount factor. Market power is essential to the result, which fits a strategic
environment, as is the need of storage to first buy. Combined, these characteristics allow
other players to determine the marginal cost of storage.
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1 Introduction

In electricity markets, the emergence of storage is transformative. It may render the energy

transition feasible by making energy available when need rather than when produced and so

acts as a complement to variable renewable energy sources. However storage also disrupts

trading as it uses inherently dynamic strategies; it must first buy to then sell, and can do

so at any time it finds opportune. And for conventional generators that realize most of their

payoffs during high-price periods, storage is an unwelcome competitor.

In this paper we study a pointed question. We demonstrate that conventional producers (in

electricity, thermal generators) can (collectively) prevent a storage unit from operating. That

is, storage entry into a market dominated by conventional production-for-sale is not a foregone

conclusion. In terms of policy, this suggests that competition authorities should monitor the

behavior of large producers to ensure entry is not preempted. The key point of our result is

that the marginal cost of storage is determined by the behavior of all players when buying.

This differs from any game studied so far, especially more standard problems of selling only,

where the marginal cost is exogenous and only revenue is endogenously determined.1 The

reason is that storage must buy in order to sell–it feeds on an arbitrage spread–and players

have market power. Therefore, this first purchase can act like an entry cost that may not

be covered by the selling revenue. A policy maker can intervene by offering a subsidy that

equals the revenue shortfall. However, and this is a direct consequence of the equilibrium

construction, this subsidy should be paid out each period into perpetuity.

Technically, we study a long-horizon game with a finite number of conventional sellers

(equivalently, producers) and one storage operator, all playing a quantity game. They face

a stochastic demand; the aggregate demand shocks induce a sequence of high and low prices

over time. A storage operator can step in to exploit these price differences by implementing

the simple idea of “buying low and selling high”; this is known as merchant storage. This

sequence of events defines a stochastic game, which admits many equilibria (Shapley (1953)).

We focus on constructing a subgame-perfect equilibrium that is novel, and in which the storage

1In more general games, the cost of an action is exogenous–including if zero.
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operator never finds it profitable to trade. The reason is that low (buying) and high (selling)

prices are determined endogenously by the actions of all players. The conventional sellers

can collude to keep “low” prices sufficiently high to be unattractive for the storage unit to

buy, given that it must subsequently sell under conditions they also determine as part of the

equilibrium play. Any deviation, by any player, triggers Nash reversion for at least the next

selling opportunity; it is this off-equilibrium play that deters buying in the first place. The

novelty of this equilibrium is the combination of a simple grim-trigger strategy that supports

cooperation between producers with a cycling play that deters the first purchase by the storage

unit. Disciplining the producers is achieved using Nash reversion as the grim-trigger strategy.

In the cycle, producers can observe whether storage buys (at a monopoly price) to adjust their

actions when selling (at a Cournot price). In equilibrium, buying is never worthwhile for the

storage unit. We call this a “preemption equilibrium”, and explain it in detail in Section 3.2.2

Like any cooperative equilibrium, the discount factor must be large enough for grim-trigger

to have bite. But, in a novel twist, this discount factor may also be bounded from above

(below 1) to ensure the one-cycle payoff to storage remains negative: the off-path expected

Cournot revenue must remain low enough to make the trade unattractive to storage. For this

equilibrium to exist, two elements are required: the storage unit must first buy (to then sell)

and the purchase price must be determined by equilibrium play (i.e. the other players). That

is, market power is a key ingredient; this must be a strategic game. We also speak to the

robustness of this equilibrium.

This paper sits at the intersection of game theory and the economics of electricity. How-

ever its relevance extends beyond electricity markets: it applies to any environment where

merchant storage can be active, including market making in securities.3 It contributes to the

extant literature on electricity markets because it seeks to characterize behavior in a stochastic

environment with market power. Karaduman (2020) studies grid scale storage. Generators

and the storage unit play an infinite horizon game and market power is internalized. However,

Karaduman (2020) limits himself to simulating the best reply from the data. So, the actual

2It may not be the only equilibrium that results in no trade for the storage unit.
3A market maker buys, holds and sell securities strategically, and has a capacity bounded by its own

capital.
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behavior of the storage unit is never known. Andres-Cerezo and Fabra (2023) study market

structure with storage, but do not delve into how storage actually behaves. A generator can

enhance its market power by also owning storage, especially when demand is the highest: the

joint ownership of these two assets induces more quantity withholding. In their model, this

is not tacit collusion but simply joint-profit maximization of two assets owned by the same

controlling entity.

Shapley (1953) introduced stochastic games, which have been used in economics to model

entry (and exit) decisions in industrial organization (Pakes and McGuire (1994), Doraszelski

and Satterthwaite (2010) and others). Their study has led Maskin and Tirole (2001) to

develop the solution concept of a Markov perfect equilibrium- (MPE)–see also Doraszelski and

Escobar (2010) in particular, and many others, since. In their paper on repeated oligopoly

under incomplete information, Bonatti et al. (2017) rely on the MPE concept; their focus is on

learning. In contrast we construct a subgame-perfect equilibrium of our game since we want

to study a cooperative equilibrium, the enforcement of which depends on the history of the

game. That is, players must have at least some information about the entire history of play for

the equilibrium to be sustainable through off-path punishment threats. In a paper concerned

with providing foundations for Markov perfection, Bhaskar et al. (2013) also point out that

the cost of the simplicity and descriptive accuracy of MPEs is the loss of payoff-irrelevant

histories that are strategically useful; some equilibria are lost. Here we exploit these off-path

histories to support our equilibrium. The conditions of Bhaskar et al. (2013) do not apply to

our equilibrium, which requires perfect recall.

2 Model

Consider a market with one storage unit, n producers (sellers) indexed by j = 1, 2, ...n, and

a pool of consumers. The set of (strategic) players is labeled N . Consumers are diffuse and

not strategic. Their behavior is described by the demand function D(pt, εt) for each period

t, where εt ∈ E is a shock distributed according to some commonly known distribution F .

Producers are strategic players. Each of them produces a quantity qjt (for example, energy)
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for each period t, so qt is the action vector; they are not subject to capacity constraints.

The storage unit is a special player in this game with a finite capacity k. In each period

t, the storage operator can either buy bt (for example, energy) up to its capacity, or sell st.

We specialize the model in that s, b ∈ {0, k}; the storage buys or sell its entire capacity each

time.4 This process can be described by a simple equation of motion:

ct = ct−1 + bt −
st
δ
, t ∈ N, c0 = 0; ct ∈ {0, k}, t > 0. (1)

Here, ct is the current inventory level, δ is a “round-trip” efficiency parameter (0 < δ ⩽ 1),

and bt ⩾ 0, st ⩾ 0. We suppose the storage unit has a discount factor β < 1; it is exposed to

a strictly positive interest rate. A storage operator can only either buy or sell in each period,

so bt · st = 0 for any t. This is an assumption (in electricity, a technical characteristic), but

we also note that it cannot be optimal to simultaneously buy and sell; with δ < 1, it is even

strictly suboptimal. The set of actions is denoted At :=
{
qt ∈ Rn

+; bt, st ∈ {0, k}
}
. Sellers bid

quantities in a centralized market; this market clears if

D(pt, εt) =
n∑

j=1

qjt − bt + st (2)

for any t. Since the nature of competition is not the primary object of interest, throughout

the rest of the paper we consider a linear demand function:

D(pt, εt) = 1− pt + εt.

The exact timing of the game is as follows: the storage unit starts empty, and at each moment

t, a (invisible) market operator collects consumer demand D(pt, εt). All players observe the

shock εt and storage moves first to either buy or sell. Producers bid qjt for all j = 1, 2, ..., n.

Of course, storage (correctly) anticipates their response (in equilibrium). For completeness,

the storage operator can bid more than the suppliers are willing to offer–for example, q = 0.

4This is a special version of the model of our companion paper, in which s, b ∈ [0, k]; see Balakin and
Roger (2025a).
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Producers each maximize their payoffs

E

[
∞∑
t=0

βtptq
j
t

]
, (3)

by choice ofqjt for each t ≥ 0 and j ∈ N . The objective of the storage operator is to maximize

E

[
∞∑
t=0

βtpt(st − bt)

]
, (4)

over st, bt, t ≥ 0 and subject to the law of motion (1).

For our purposes in studying this game, the history of play matters. Therefore we need to

work with the concept of subgame-perfection. The state variables are a pair of inventory levels

and demand shocks, so actions are mappings bt, st : C × E × Ht 7→ {0, k}, where C := {0, k}

and Ht is the set of all histories at time t, with H0 ≡ ∅. Because actions bt := b(ct, εt;Ht)

and st := s(ct, εt;Ht) already encode the state (c, ε) of the system, histories Ht ∈ Ht are

constructed in standard fashion. For the storage unit, a strategy is a sequence of these actions

from time 0 to ∞. The corresponding value function reads

V (c) = sup
b,s

E

[
∞∑
t=0

βtpt(st − bt)

]
.5 (5)

We denote the set of payoffs by U ; this set is to be understood as all the possible values

that (3) and (4) can take.

Definition 1. An equilibrium of the game G := {F,N ,A,U} is

• a sequence of vectors {q∗
t}

∞
t=0 such that, for each j,

{
(q∗)jt

}∞
t=0

∈ argmaxE

[
∞∑
t=0

βtptq
j
t

]
;

5We dispense proving that the Dynamic Programming Principle holds in this environment, which is quite
standard.

6



• a sequence of pairs {b∗t , s∗t}
∞
t=0 such that

{b∗t , s∗t}
∞
t=0 ∈ argmaxE

[
∞∑
t=0

βtpt(st − bt)

]

• and for all t = 0, 1, ..,∞ the market clears: (2) holds.

We confine our attention to symmetric equilibria. Depending on the decisions of the storage

operator, in each round there may be either

• n (symmetric) active players; or

• n+ 1 active players, including the storage unit.

Next we explain trading in the dynamic game and then turn to the object of this paper,

which is the construction of the exclusion equilibrium.

3 The result

For later reference we present an intermediate result that is a direct extension of the

Cournot equilibrium. This equilibrium is used to support our new preemption equilibrium.

Lemma 2. If the storage unit is a seller with capacity k, then the (symmetric) equilibrium

price p∗ and equilibrium quantities s∗ and q∗ under Cournot competition are:

p∗ =
1 + ε− k

n+ 1
, s∗ = k, q∗ =

1 + ε− k

n+ 1
. (6)

If the storage unit is a buyer with capacity k, then the (symmetric) equilibrium price p∗

and equilibrium quantities b∗ and q∗ under Cournot competition are

p∗ =
1 + ε+ k

n+ 1
, b∗ = k, q∗ =

1 + ε+ k

n+ 1
. (7)

The proof is trivial and therefore omitted. If the storage unit neither buys nor sells, the

standard Cournot competition between n generators prevails, and then p∗ = q∗ = (1+ε)/(n+1)
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in symmetric equilibrium.

For most of the paper we restrict the distribution F of shocks to be a simple, independent

binary process with

ε ∈ {a,−a}, a > 0 and Pr(ε = a) = Pr(ε = −a) =
1

2
.

However we also argue that our results hold in the neighborhood of 1/2 for an asymmetric

distribution (p, 1− p), and for more general Markov processes (i.e. with serial correlation) in

the neighborhood of our simple distribution.

3.1 Trading energy over the long horizon

As we know from the literature on repeated games and on stochastic games (see, for

example, Chatterjee et al. (2003)), these games admit many equilibria. In a companion

paper Balakin and Roger (2025a), we study a more general version of the model of Section 2

and make progress by reducing the space of admissible strategies to simple heuristics and by

imposing that conventional sellers play Cournot quantities every period.6 This equilibrium is

useful here to support our new preemption equilibrium.7 What was a restriction in Balakin

and Roger (2025a) becomes a standard Nash reversion play here.

Under the simple independent shock structure (1/2, 1/2), and given that storage starts

empty, the recursive equation may be written in the following form:


V (0) =

1

2− β

(
−1− a+ k

n+ 1
· k + βV (k)

)
,

V (k) =
1

2− β

(
1 + a− δk

n+ 1
· δk + βV (0)

)
.

(8)

Given the nature of the stochastic process, it is immediate that V is time invariant.

Observe that it cannot be optimal for the storage operator to buy when the shock ε is

6The Cournot equilibrium is simple to describe, unlike any of the more sophisticated equilibrium strategies
one can construct. Our last justification is the work of Bonatti et al. (2017), who study a dynamic Cournot
model under incomplete information with learning. The equilibrium converges to the repeated static Nash
equilibrium.

7The heuristic is already simplified even further since s, b ∈ {0, k}.
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positive, nor can it be optimal to sell when it is negative. Denote the purchasing costs as B

and likewise by A the revenue storage earns when selling:

B = B(k) =
1− a+ k

n+ 1
· k, A = A(k) =

1 + a− δk

n+ 1
· δk.

In both A and B the first term is the clearing price and the second one is the quantity traded.

Let also the coefficients be

G01 =

(
1 + a

n+ 1

)2

, G00 =

(
1− a+ k

n+ 1

)2

, G10 =

(
1− a

n+ 1

)2

, G11 =

(
1 + a− δk

n+ 1

)2

.

Gij is a (non-discounted) seller payoff when the storage is either empty (i = 0) or full (i = 1)

and when the demand shock is either negative (j = 0) or positive (j = 1). Suppose also the

discount factor β is such that

B <
β

2− β
A.8

Lemma 3. A dynamic equilibrium exists and is characterized as follows:

• the empty storage buys k units with the first negative shock and sells δk units with the

first positive shock afterwards;

• in each period, the n sellers set quantities q∗ according to static Cournot competition

and based on the current shock and the state of storage (full or empty). Namely,

when storage is empty: q∗ =
1 + a

n+ 1
if ε = a, q∗ =

1− a+ k

n+ 1
if ε = −a;

when storage is full: q∗ =
1− a

n+ 1
if ε = −a, q∗ =

1 + a− δk

n+ 1
if ε = a.

Aggregate consumers’ expected payments C are

C =
1

2(n+ 1)2
(
2n(1 + a2)− ka(n− 1)− k2

)
.

Expected payoffs Us of the storage unit and aggregate payoffs Ug of the producers take the

8Note A and B are determined in terms of primitives. This is just convenient notation.
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following form:

Us =
1

2

[
−B +

β

2(1− β)
(A−B)

]
, (9)

Ug =
1

2
(G01 +G00) +

β

4(1− β)
(G10 +G11 +G00 +G01).

We display this equilibrium i because it is used off-path to support our cooperative equi-

librium and (ii) to explore some of the salient features of the trading problem. First, storage

activity increases the output of producers when the demand shock is negative. This also

increases prices (when they are otherwise low); that is, storage activity is a complement to

the producers. But storage also decreases the output of these producers when the shock is

positive; this concurrently depresses otherwise high prices. Here storage is a substitute to

producers. Furthermore, every time it engages in arbitrage, the storage unit decreases the

very spread it feeds on. It is exactly this phenomenon of spread contraction that renders the

exclusion equilibrium tenable and that producers exploit.

3.2 A preemption equilibrium

The equilibrium constructed in Lemma 3 gives the storage operator some leeway: while the

n producers play the Cournot best response, storage moves first. Perhaps more importantly,

in selecting this equilibrium (for reasons laid out in Section 3.1), it is implicitly imposed that

producers accommodate the storage unit. Now we show this need not be true: there also

exists an equilibrium in which the storage unit never trades–irrespective of any entry decision.

3.2.1 The equilibrium

In this cooperative equilibrium, the producers act in such a way that storage operator

never finds it profitable to incur the cost purchasing in the first place. Let β := β(a, n) and
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β := β(a, n, δ, k) be

β =
(1 + a)2(n+ 1)2

4n(1 + a2) + (1 + a)2(n+ 1)2
and β =

2

1 +
2δ(1 + a− δk)

(n+ 1)(1− a+ 2k)

Proposition 4. Assume that

β ⩽ β ⩽ min
{
β, 1
}
. (10)

Then there exists a dynamic Subgame Perfect Nash Equilibrium, such that:

• in each period, the generators set quantities

– ε = −a:

• q∗ = 1−a
2n

if none of the generators deviated in the previous rounds,

• q∗ = 1−a+k
n+1

if storage is empty and any of the generators deviated in the previous

rounds,

• q∗ = 1−a
n+1

if storage is full and any of the generators deviated in the previous

rounds;

– ε = a:

• q∗ = 1+a
2n

if storage is empty and none of the generators deviated in the previous

rounds,

• q∗ = 1+a
n+1

if storage is empty and any of the generators deviated in the previous

rounds,

• q∗ = 1+a−δk
n+1

if storage is full;

• b = s = 0: storage does not trade if none of the generators have deviated; otherwise,

storage trades positive quantities if

B <
β

2− β
A. (11)
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The aggregate expected payments from consumers C0 each period are:

C0 =
1 + a2

4
.

The expected payoffs U0
g and U0

s of the producers and the storage unit, respectively, take the

following form:

U0
g =

1 + a2

4(1− β)n
, U0

s = 0.

Immediately one sees that consumers and storage are worse off in this equilibrium, and the

producers are better off, than in the benchmark of Lemma 3. There can be no Pareto-ranking

of these equilibria, which speaks to the conflict that is inherent to this game.

In intuitive, economic terms, storage is preempted because of the combination of two

factors: (i) it starts empty and so must first buy to become active, and (ii) its marginal cost

is determined by the other players.9

More precisely, in this equilibrium, producers collude to the joint-profit maximizing quan-

tities and the storage unit never buys. Equilibrium play must deter two kinds of deviations.

First, the producers must elect to not deviate; this is supported by the threat of Cournot

reversion, which is subgame perfect as established by Lemmata 2 and 3. This is exactly what

the left-hand side of Condition (10) delivers: the discount factor must be large enough, as

is well known. The second kind of deviation is novel: as long as no producer deviates, the

storage operator also prefers not purchasing. If she does buy at the monopoly price, the sellers

(i) play the quantities described in Lemma 3 when storage is in a position to sell, and (ii)

revert to the joint monopoly quantity when storage must buy again. This is also subgame

perfect. This threat is sufficient because the purchasing cost is too high compared to what

the storage unit can collect once sellers respond; this is the right-hand side of Condition (10),

which is an upper bound on the discount factor. This condition only needs considering payoffs

for one trading cycle: as long as no producer deviates, they all revert to the joint-monopoly

9Of course, so is its marginal revenue, but this is true in any standard strategic situation.
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quantities; that is, players are back in the original situation. Note also that here the strategic

effect works through market power to support the equilibrium. Absent market power, this

equilibrium does not exist.

This equilibrium is more intricate than the simple grim trigger strategy. Nash reversion is

part of the equilibrium (to deter deviations by sellers), but that is not enough. To deter the

storage unit from buying, off-path play must cycle between two quantities depending on the

state of the system. That state is summarized by the pair (c, ε) of the state of charge and the

demand shock.

To be sure, this equilibrium is also not in the spirit of a folk theorem in that the discount

factor β must be bounded above–and that upper bound β(n, a, δ, k) is not trivially 1. This

function β decreases in a and δ and increases in k and n, both of which being intuitive. Its

lowest value is 0 when a → 1 and k → 0 (no market power), but it changes drastically for

small changes in parameters: for example, for k = 0, 2 and a = 0.8, the lowest value of β

already jumps to 0.72 with δ = 1, n = 2. For low a = 0.2 and n = 2, δ = 0.95 our equilibrium

exists for 0.61 ⩽ β ⩽ 1 under any k; for higher a = 0.6 and n = 2, δ = 0.95, k = 0.1, one needs

0.68 ⩽ β ⩽ 0.77 but for a = 0.6, n = 2, δ = 0.95 and any k > 0.24, the upper bound β hits its

natural boundary again: 0.68 ⩽ β ⩽ 1. The left-hand side of (10) is simpler to understand:

it is a function β(a, n) that increases in both its arguments. This function is bounded below

by 9/17 when n = 2 and a → 0 and reaches 1 for n → ∞; for a = 1, n = 2, we have β = 9/13.

That is, the condition β(n, a) ⩽ β is somewhat demanding: it exceeds the standard Bertrand

condition with unit demand.

Proposition 4 suggests the emergence of storage is not a foregone conclusion, even absent

entry costs. Facing such a situation, and in light of the equilibrium payoffs of Proposition 4,

policy makers may be compelled to intervene, especially if guided by a consumer welfare stan-

dard. Preemption may be overcome with the help of a small subsidy, however in perpetuity.

Here it is enough to cover the revenue shortfall to induce storage to operate; but since a single

cycle is sufficient to preempt storage, that subsidy may have to be paid out every period.

In contrast, a lump-sum payment equal to the prevent value of losses in perpetuity fails to
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provide any incentive for storage to operate. This is not very different from the perennial

subsidization of public transport. Returning to our motivating energy market, this form of

preemption continues to be relevant even as thermal generators exit the market: it can be

carried out by incumbent storage units instead.

3.2.2 Robustness

In our construction of Proposition 4 we limit the stochastic process to be symmetric and

serially independent. A natural question to ask is whether this is limiting; the answer is no.

Of course, the details of Condition (10) differ but the construction remains. One can depart

from the simple symmetric, i.i.d. case in two ways.

First, one can enrich the Markovian structure, as we do in our companion paper Balakin

and Roger (2025a). Then Condition (11) changes to

B <
β(1− y)

1− βy
A,

where y = Pr{εt+1 = −a|εt = −a} is a level of persistence (serial correlation). If y = 1/2

we revert to Proposition 4. Continuity of the functions β, β guarantees the same equilibrium

continues to exist in the neighborhood of y = 1/2. For y > 1/2, shocks are persistent; this is

bad news for storage because it needs to wait for longer to sell (so we expect β to increase).

For y < 1/2, the converse is true: shocks change faster than in the independent case, so

storage expects to wait less. This renders purchasing more attractive for the storage unit. In

this case, we can also expect β to decrease. It is a mere exercise to compute the functions β

and β for this more general process and then to check the construction.

Second, one can consider asymmetric shocks (p, 1− p), p ̸= 1/2 that are serially indepen-

dent. The same continuity argument applies and the equilibrium continues to exist for p in

the neighborhood of 1/2. Away from 1/2, it is also a mere exercise in algebra to compute the

functions β and β and to check that the equilibrium exists for some parameter values or to

put restrictions on p for it to exist. If the negative shock is more likely, say p > 1/2 selling

takes longer, so one can expect β to increase.
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4 Conclusion

In this short paper we construct an exclusion equilibrium in which conventional producers

can collude to prevent a storage unit from being active. This result requires both market

power, so that players strategically determine clearing prices, and that the storage unit starts

the game empty. In equilibrium, it stays empty. The equilibrium combines a simple grim-

trigger strategy that disciplines the sellers with a threat of cycling between a high purchase

price and a low selling price.

We believe this is a plausible equilibrium in that (i) storage activity is a stronger substitute

than a complement for producers because it sells in periods of high demand, so the producers

have incentives to exclude storage operators, and (ii) many industries feature market power;

that is, are strategic environments.

As storage emerges as the key technology of the energy transition, policy makers should

be aware of the potential pitfalls this novel class of strategic situation can induce. There is

still a tremendous amount of work to do to really understand the economics of storage. This

is but an example of a bad outcome and of its potential remedy.
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A Appendix – for online publication

A.1 Proof of Lemma 3

According to (7) and (6), the storage operator buys k units under price p = (1 − a +

k)/(n + 1) and sells δk units under price p = (1 + a− δk)/(n + 1). The probability that the

storage unit observes the first positive shock after i periods is (1/2)i−1 · (1/2). Thus, the total

discounting of waiting for the positive shock after recharging is equal to

1

2
· β +

1

4
· β2 + · · ·+ 1

2i
· βi + · · · = β

2− β
.

Hence trading is profitable for the storage operator if −B + β
2−β

A > 0.

Four possible deviations of the storage unit should be considered. All other deviations are

just compositions of those four.

• The unit is full but deviates by not selling under the positive shock. Then there may

be only loss comparing to the default strategy. Indeed, nothing changes on the market

except the future profits to be discounted by β.

• The unit is empty and deviates by not buying under the negative shock. Also, no gains

here.

• The unit is full and deviates by selling under the negative shock. In this situation, the

quantities supplied by the producers are q = (1 − a)/(n + 1). The resulting price after

the deviation is

p = 1− a− δk − n
1− a

n+ 1
=

1− a

n+ 1
− δk.

To make this deviation profitable, the storage operator must gain more than if it waits

for the positive shock and sells in that period:

(
1− a

n+ 1
− δk

)
δk >

β

2− β

1 + a− δk

n+ 1
δk,

which is impossible when B < β
2−β

A.
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• The unit is empty and deviates by buying under the positive shock. Here we have

q = (1+a)/(n+1), and the resulting price after the deviation is p = (1+a)/(n+1)+k.

The profits after selling the purchased energy are:

−
(
1 + a

n+ 1
+ k

)
k +

β

2− β

1 + a− δk

n+ 1
δk

= − k

n+ 1

((
1− β

2− β
δ

)
(1 + a) +

(
β

2− β
δ2 + n+ 1

)
k

)
< 0.

There are no gains from this deviation.

Ruling out deviations of the producers is simple. In each round, we have a static Cournot

equilibrium for all the participants. Thus, any change of the equilibrium quantity in any round

t leads to a decrease in the payoffs in that round and thus to a decrease in the overall payoffs.

Indeed, the stage-game Cournot equilibrium is also an equilibrium in the long-horizon game.

To find the expected payoffs of the storage unit, let us introduce value function Vt(i), i ∈

{1, 0}. Vt(i) is the total expected payoffs of the unit from moment t if the current state is full

(i = 1) or empty (i = 0). We have a system of recursive equations:


Vt(1) =

1

2
· (A+ βVt+1(0)) +

1

2
· β · Vt+1(1),

Vt(0) =
1

2
· β · Vt+1(0) +

1

2
· (−B + β · Vt+1(1)) .

It can be rewritten in matrix form

Vt = P + β ·Q · Vt+1, (12)

where

Vt =

Vt(1)

Vt(0)

 , P =
1

2

 A

−B

 , Q =
1

2

1 1

1 1

 .
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Note that Q2 = Q. For β < 1, we can find from (12) that

V0 = P +
t∑

i=1

βiQi · P + βt+1Qt+1 · Vt+1 =

= P +
β(1− βt)

1− β
·Q · P + βt+1 ·Q · Vt+1 −−−→

t→∞
P +

β

1− β
·Q · P =

1

4

2−β
1−β

A− β
1−β

B

β
1−β

A− 2−β
1−β

B

 .

(13)

The lower term is exactly Us.

To find the expected payoffs of the producers, let us introduce value function Wt(i), i ∈

{1, 0}. Wt(i) is the total expected payoffs of a generator from moment t if the current state

of the storage unit is full (i = 1) or empty (i = 0). We have a system of recursive equations:


Wt(1) =

1

2
· (G10 + βWt+1(1)) +

1

2
· (G11 + β ·Wt+1(0)) ,

Wt(0) =
1

2
· (G00 + β ·Wt+1(1)) +

1

2
· (G01 + β ·Wt+1(0))

that can be rewritten in matrix form

Wt = R + β ·Q ·Wt+1, where

Wt =

Wt(1)

Wt(0)

 , R =
1

2

G10 +G11

G00 +G01

 , Q = Q2 =
1

2

1 1

1 1

 .

Using the same algebra as for V (t) earlier, we obtain

W0 −−−→
t→∞

R +
β

1− β
·Q ·R =

1
2
(G10 +G11) +

β
4(1−β)

(G10 +G11 +G00 +G01)

1
2
(G00 +G01) +

β
4(1−β)

(G10 +G11 +G00 +G01)

 .

The lower term is exactly Ug.

To find aggregate consumers’ expected payments C, let us introduce the value function
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Zt(i), i ∈ {1, 0}. Zt(i) is the aggregate expected payments of consumers from moment t if the

current state of the storage unit is full (i = 1) or empty (i = 0). We have a system of recursive

equations:


Zt(1) =

1

2
· (C1 + βZt+1(1)) +

1

2
· (C2 + β · Zt+1(0)) ,

Zt(0) =
1

2
· (C3 + β · Zt+1(1)) +

1

2
· (C4 + β · Zt+1(0)) ,

where

C1 =
1− a

n+ 1
· 1− a

n+ 1
n, C2 =

1 + a− δk

n+ 1
·
(
1 + a− δk

n+ 1
n+ δk

)
,

C4 =
1 + a

n+ 1
· 1 + a

n+ 1
n, C3 =

1− a+ k

n+ 1
·
(
1− a+ k

n+ 1
n− k

)
.

It can be rewritten in matrix form

Zt = C + β ·Q · Zt+1, where

Zt =

Zt(1)

Zt(0)

 , C =
1

2

C1 + C2

C3 + C4

 , Q = Q2 =
1

2

1 1

1 1

 .

Using the same algebra as for Vt and Wt earlier, we obtain

Z0 −−−→
t→∞

C +
β

1− β
·Q · C =

1

4(1− β)

(2− β)(C1 + C2) + β(C3 + C4)

β(C1 + C2) + (2− β)(C3 + C4)

 .

The lower term after substituting Ci is exactly C.

A.2 Proof of Proposition 4

Let us start with the possible deviation of the storage operator. If the storage unit decides

to operate and make a purchase under monopolistic quantities set by the producers, the
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equilibrium prescribes that it sells under Cournot quantities. The expected storage payoffs

during one round-trip cycle are

−
(
1− a

2
+ k

)
k +

β

2− β

1 + a− δk

n+ 1
δk, (14)

and so are non-positive if

β

2− β
⩽

(n+ 1)
(
1−a
2

+ k
)

δ (1 + a− δk)
,

which is equivalent to the right side of (10). Hence, as long as producers can maintain their

collusive equilibrium, the storage unit should not purchase anything and so never operates.

Condition (14) is sufficient as long as no seller deviates because the equilibrium prescribes

they revert to the joint-monopoly quantity when ε = −a.

Next we turn to the possible deviations of a producer. First, we consider the case where

the inequality (11) does not hold; then storage finds it unprofitable to operate with Cournot

bids. This is the condition of Lemma 3. A producer deviates from its monopolistic quantity

when the shock is positive: ε = a. Let the deviation be γ. Then the payoffs of the producer

after deviating is

(
1 + a

2n
+ γ

)(
1 + a

2
− γ

)
+

β

1− β

(
1

2

(
1 + a

n+ 1

)2

+
1

2

(
1− a

n+ 1

)2
)
.

The producer increases its quantity by γ, which also results in a price decrease by γ. It

also triggers the punishment regime: all other sellers switch from monopolistic quantities

to Cournot quantities, which results in the discounted expected payoff over infinite horizon

expressed by the second item. This deviation is unprofitable if

(
1 + a

2n
+ γ

)(
1 + a

2
− γ

)
+

β

1− β

(
1

2

(
1 + a

n+ 1

)2

+
1

2

(
1− a

n+ 1

)2
)

⩽
1 + a

2n

1 + a

2
+

β

1− β

(
1

2

(1 + a)2

4n
+

1

2

(1− a)2

4n

)
,
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which can be simplified to

n− 1

n
(1 + a)γ − 2γ2 ⩽

β

1− β

(1 + a2)(n− 1)2

2n(n+ 1)2
.

The maximum on the left side can be achieved when γmax = (1 + a)(n − 1)/(4n). Then we

obtain

(1 + a)2

4n
⩽

β

1− β

(1 + a2)

(n+ 1)2
, (15)

which is equivalent to the left side of (10).

Now suppose that a producer deviates from the joint-monopoly quantity when the shock

is negative: ε = −a. This move is unprofitable if

(
1− a

2n
+ γ

)(
1− a

2
− γ

)
+

β

1− β

(
1

2

(
1 + a

n+ 1

)2

+
1

2

(
1− a

n+ 1

)2
)

⩽
1− a

2n

1− a

2
+

β

1− β

(
1

2

(1 + a)2

4n
+

1

2

(1− a)2

4n

)
,

which can be simplified to

(1− a)2

4n
⩽

β

1− β

1 + a2

(n+ 1)2
.

This inequality is weaker than (15).

Second, consider the case where inequality (11) holds: storage can operate under Cournot

quantities, as in Lemma 3; that is, here, immediately after any of the producers deviates.

Since the payoffs of a deviating producer are lower when storage participates than when it

does not, inequality (15) is sufficient to make this deviation unprofitable.

Finally, we should also prove that our pool of equilibrium strategies forms an SPNE even

at information sets that are off the equilibrium path. Namely, producers must not want to

deviate even if storage operates. Indeed, if the shock is positive, all the producers set static

Cournot quantities, and it becomes unprofitable to deviate. If the shock is negative, any

deviation from the monopolistic quantities implies a punishment that was already considered

earlier. Hence, all the possible deviations of a producer are unprofitable, and the proposed

strategies of all the players form a Nash equilibrium.
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To calculate the expected payoffs of a producer, we obtain a recursive equation for the

payoffs Zt of sellers, starting from the period t:

Zt =
1

2
G01 +

1

2
G10 + βZt+1.

We can easily find Z0 = U0
g from this equation.

Since positive and negative shocks are equally likely, the aggregate consumers’ expected

payments per period are

C0 =
1

2
·
(
1 + a

2

)2

+
1

2
·
(
1− a

2

)2

=
1 + a2

4
.
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